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From droplets to waves: periodic instability
patterns in highly viscous microfluidic flows
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We experimentally study the transition from droplet to wave regimes in microfluidic
liquid–liquid multiphase flows having large differences in viscosity. A unified approach
based on periodic pattern analysis is employed to study relationships between
dispersed and separated flow regimes, including dripping, jetting, capillary waves,
inertial waves and core–annular flows over a wide range of flow rates and viscosity
contrasts. We examine the morphology and dynamics of each flow regime based
on wavelength, frequency and velocity of repeating unit cells to elucidate their
connections and to develop predictive capabilities based on dimensionless control
parameters. We demonstrate in particular that pattern selection is contingent upon
the propagation velocity of droplets and waves at the transition. We also investigate
microfluidic wave breaking phenomena with the formation of ligaments and droplets
from wave crests in both capillary and inertial wave regimes. This work expands
conventional multiphase flow regimes observed in microchannels and shows new
routes to disperse highly viscous materials using interfacial waves dynamics in
confined microsystems.

Key words: drops, microfluidics, core–annular flow

1. Introduction
Flow regime prediction of multiphase flows in confined geometries is important for

many engineering techniques and industrial processes, and it remains a challenging
problem in fundamental fluid mechanics (Brennen 2005; Crowe 2006; Cheng, Ribatski
& Thome 2008). Flow patterns can indeed adopt various interfacial morphologies and
dynamics, leading to diverse mechanisms for the transport of mass, momentum
and energy (Bird, Stewart & Lightfoot 2002). While the motion of a single-phase
flow depends on the interplay between inertial and viscous forces, the behaviour of
two-phase flows involves numerous parameters, including bulk fluid properties, such
as densities and viscosities, and interfacial properties, such as surface tension. In
addition, flow destabilization processes also depend on flow parameters and local
geometries, including Plateau–Rayleigh instabilities, where liquid threads break into
droplets due to interfacial tension, Kelvin–Helmholtz instabilities between streams
having large differences in velocities, Rayleigh–Taylor instabilities for heavier fluids
sitting on top of lighter ones, and Saffman–Taylor instabilities when a less viscous
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fluid is injected through a thick fluid in confined geometries (Drazin & Reid 2004).
In general, hydrodynamic stability analysis of open flows includes (a) convective
instabilities, where flow perturbations are advected downstream, and (b) absolute
instabilities, where perturbations can also propagate upstream (Huerre & Rossi
2005; Salin & Talon 2019). Linear stability analysis of base flow provides a useful
framework for determining regions of stability and flow characteristics; however, less
is known about the evolution of fluid morphologies and pattern dynamics at the
transition between flow regimes.

Owing to considerable industrial interest, liquid–gas flows have been significantly
studied in channels of various sizes and a wide range of flow patterns have been
classified, such as bubbly, slug, churn, stratified, wavy, mist and core–annular flows
(Triplett et al. 1999; Cubaud, Ulmanella & Ho 2006; Berna et al. 2015). Multiphase
flow patterns can also be grouped into two categories: (a) dispersed flows, where one
phase forms discrete elements in the other continuous phase, and (b) separated flows,
where both phases form continuous streams (Crowe 2006). A difficulty in predicting
regime selection of dispersed and separated flows lays in the different methods used
to analyse each flow pattern, and a unifying approach would improve predictive
knowledge of multiphase flows.

Microfluidic technologies provide advanced experimental platforms with fine control
over flow rates and microgeometries to investigate the role of fluid properties
in multiphase flow instabilities (Hu & Cubaud 2018). For liquid–liquid systems,
monodisperse droplet dispersions can be steadily generated using microchannels and
find use to encapsulate reagents in domains as diverse as material synthesis, drug
discovery and the food industry (Barrero & Loscertales 2007; Baroud, Gallaire &
Dangla 2010; Anna 2016; Evangelio, Campos-Cortés & Gordillo 2016; Mowlavi et al.
2019). Two common regimes of droplet formation have been identified as dripping
and jetting based on the location of droplet pinch-off from the fluid junction (Eggers
1997; Guillot et al. 2007; Cubaud & Mason 2008; Nunes et al. 2013; Gordillo,
Sevilla & Campo-Cortés 2014). The regime transition between dripping droplets,
which form in the upstream region near the fluid contactor, and jetting droplets,
generated from a slender thread further downstream, corresponds to a shift from an
absolute to a convective instability of dispersed flows (Utada et al. 2008; Augello,
Fani & Gallaire 2018). Linear stability analysis shows good agreement with data for
delineating the absolute–convective instability transition between dripping droplets
and jets in coaxial flows (Guillot et al. 2007).

In the context of separated flows, the hydrodynamic stability of viscous stratific-
ations has been theoretically and numerically investigated (Yih 1967; Hinch
1984; Selvam et al. 2007; Govindarajan & Sahu 2014), and the development of
interfacial waves in viscous-stratified flows has been reported in various experimental
configurations (Sangalli et al. 1995; Al-Wahaibi & Angeli 2011; Hu & Cubaud
2016). When an inner stream is unsheathed with another fluid, the destabilization of
miscible and immiscible core–annular flows has been studied in small tubes with the
appearance of interfacial waves (Cao et al. 2003), including bamboo waves (Joseph
& Renardy 1993) and pearl-mushroom waves (D’olce et al. 2008), which result from
the development of absolute instabilities (Salin & Talon 2019). In microchannels,
a variety of instability patterns were examined based on fluid and flow properties
during the formation of miscible viscous threads (Cubaud & Notaro 2014). Overall,
the development of periodic flow patterns allows one to relate flow characteristics
to control parameters and provides insight into hydrodynamic instabilities. A general
approach, however, is needed to clarify regime transitions and relationships between
dispersed and separated flows in connection with convective and absolute instabilities.
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FIGURE 1. Schematics of typical flow patterns ((Q1, Q2), fluid pair) with corresponding
experimental micrographs: (a) dripping, ((2, 4), E5h); (b) jetting, ((2, 20), E50); and
(c) wavy ((200, 200), E5h). Flow rates Q in µl min�1. Fluid pairs as in table 1.

Pair L1 ⌘1 ⇢1 L2 ⌘2 ⇢2 ��1 �12 Symbol
(cP) (g ml�1) (cP) (g ml�1) (mN m�1)

E50 Ethanol 1.07 0.781 Silicone oil 48.5 0.960 45.3 0.65 A
E5h 485 0.971 453 1.09 E
E5k 4865 0.977 4547 1.15 6
TABLE 1. Properties of fluids used in experiments, including dynamic viscosity ⌘,

viscosity contrast ��1 = ⌘2/⌘1, density ⇢ and interfacial tension �12.

In this article, we examine the microflow behaviour of immiscible fluids having a
large difference in viscosity using square focusing sections. A variety of dispersed and
separated flows are systematically characterized using a single microflow geometry to
compare regimes and determine transitions. In particular, a periodic pattern description
is employed to relate wavelength, frequency and celerity of repeating unit cells within
each flow pattern based on control parameters. We proceed with the study of dispersed
flows and investigate the relationships between dripping and jetting regimes. We then
examine separated flows and discuss the development of capillary and inertial waves
along core–annular flows. For a given fluid pair, a rich collection of hydrodynamic
phenomena is observed from droplet to wave flow regimes. Our analysis shows
that the interfacial velocity of base core–annular flow provides a useful reference to
compare patterns across flow regimes. We quantify the transition between regimes
using dimensionless numbers and demonstrate that both droplet velocity and wave
celerity reach a maximum value at the dispersed–separated flow transition. This
insight allows us to develop predictive capabilities for the flow transition in good
agreement with experimental data over a wide range of viscosity contrasts.

2. Experimental methods
We employ a microfluidic hydrodynamic focusing section that consists of two

square microchannels of height h = 250 µm that intersect perpendicularly (figure 1).
The microchannel is made of an etched-trough silicon wafer sandwiched between
two borosilicate glass plates to allow visualization. Anodic bonding between glass
and silicon allows the chip to withstand the large injection pressures associated with
the flow of highly viscous liquids in micro-confined environments. The microfluidic
platform is mounted on an inverted microscope equipped with a high-speed camera
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to capture fast interfacial dynamics, and fluids are injected into the device using
high-pressure syringe pumps. Droplets and core–annular flows are generated when a
fluid L1 of viscosity ⌘1 is introduced in the central channel at flow rate Q1 and a
more viscous fluid L2 having a viscosity ⌘2 is symmetrically injected through side
channels at total flow rate Q2. In a typical series of experiments, the flow rate of the
high-viscosity fluid Q2 is fixed and the low-viscosity fluid flow rate Q1 is varied.

We systematically examine the microflow of three immiscible fluid pairs having low
interfacial tension �12. The liquid L1 is ethanol and L2 is silicone oils of various
viscosities (table 1). Interfacial tension �12 is measured for each fluid pair using the
Du Noüy ring method with a high-precision tensiometer. Data show that �12 remains
nearly constant for large variations of the viscosity ratio � = ⌘1/⌘2, which is typically
referred to as viscosity contrast ��1 for convenience. Over the range of parameters
investigated, the silicone oil L2 is found to wet the channel walls more than ethanol
L1; therefore the inner fluid is always lubricated by the viscous outer stream.

Depending on fluid properties and flow rates of injections, a range of microflow
arrangements are observed in the outlet channel, including (a) dripping, (b) jetting
and (c) wave regimes (figure 1). In the dripping regime, droplets are formed near the
fluid junction, whereas, in the jetting regime, droplets are generated at the tip of a jet
further downstream in the channel. Parameters of interest include the average droplet
length d, spacing L and velocity VD. The regularity of droplet flows also enables
measurement of wavelength � = d + L of a unit cell. In the wave regimes, periodic
undulations of length � and celerity c develop along the interface formed between
the two parallel streams of L1 and L2. In the following, we examine the dynamics of
each regime and study pattern transition to better understand the relationship between
fluid properties and microfluidic multiphase flows in the presence of large viscosity
contrasts.

3. Flow regimes and flow maps

Two-phase flow patterns are generally classified as separated flows when both fluids
form continuous streams and as dispersed flows when a phase forms discrete bubbles
or droplets in the other phase. Here, separated flows correspond to wavy core–annular
flows with distinct characteristics, while dripping and jetting regimes are treated as
dispersed flows. Jetting patterns display intermediate features with the formation of
a core–annular flow, or jet, near the junction and the emission of droplets at the tip
of the jet in the observation channel. Although separated flow pattern features may
further evolve downstream due to the entrainment of filamentous structures from wave
crests, we restrict our analysis to relatively short distance x/h ⇠ 16 from the junction
to directly compare the initial flow characteristics between all regimes. Analysis of
flow behaviour near the fluid junction is also relevant for lab-on-a-chip applications
where short microfluidic elements are combined.

For a given fluid pair, variations of both central and side stream flow rates, Q1
and Q2, grant access to a variety of flow regimes, as can be seen in figure 2. These
quantities are made non-dimensional using capillary numbers such as Cai = ⌘iJi/�12,
where Ji = Qi/h2 is the injection superficial velocity of fluid Li (i = 1, 2). While the
flow maps of fluid pairs E5h and E50 show similar arrangements of flow regions,
differences in the relative areas and transitions between flow regimes are apparent.
Overall, separated flows are observed at large Q1 and dispersed flows are found
at small Q1. In the droplet regimes, dripping flows with large wavelength � are
generated at low Q2, and jetting patterns with small � occur at high Q2. A somewhat
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FIGURE 2. (a,b) Flow maps of fluid pairs (a) E5h and (b) E50 in terms of flow rates
and capillary numbers. See main text for transition curves. (c) Experimental micrographs
of flow regimes (flow rates (Q1, Q2) in µl min�1). Dispersed flows: (i) dripping (1, 2),
(ii) unsteady dripping (9, 4), (iii) jetting (1, 20) and (iv) unsteady jetting (4, 20). Separated
flows: (v) stable core–annular (5, 200), (vi) capillary wave (40, 4), (vii) unsteady wave
(40, 20) and (viii) inertial wave (350, 40).

similar behaviour is found for separated flows, where waves of large � are observed
at small Q2 and short waves are generated at large Q2. Similar to our previous work
on the development of interfacial waves in two-layer viscosity-stratified flows made
of miscible or immiscible fluid pairs (Hu & Cubaud 2018), we classify the long-wave
regime as capillary waves and the short-wave configuration as inertial waves.

In the capillary wave regime, the wavelength � increases along the flow direction
before stabilizing, and the inertial regime is characterized with a spatially decreasing
�, which reaches a nearly constant value further downstream. An apparently stable
core–annular flow regime is also found in the experimental field of view for
intermediate values of Q1 at large Q2. In addition, unsteady variations of basic
droplet flow patterns are located near wave regime transitions due, in particular, to a
small droplet spacing L leading to coalescence in the unsteady dripping and jetting
regimes. Likewise, complex spatial variations of � are observed in the unsteady wave
regime between the capillary and inertial wave regimes, where the wavelength � first
decreases and then increases along the flow direction. Finally, a displacement regime,
where the high-viscosity fluid L2 engulfs the low-viscosity fluid L1 channel resulting
in no periodic pattern, is identified for very large Q2 and low Q1. This limiting
case is found below low flow-rate ratios ' = Q1/Q2, such as 1.25 ⇥ 10�2 for fluid
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pair E5h and 5 ⇥ 10�3 for E50, as shown in figure 2, and presents analogies with
the situation where the high-viscosity fluid is injected from the central channel of a
square hydrodynamic focusing section (Cubaud & Mason 2008). Other transitional
lines on the flow map are discussed in following sections. In particular, we derive
analytical criteria to unravel basic flow features and elucidate the transition curve
between dispersed and separated flows across all regimes.

4. Dispersed flows
Dispersed flow regimes comprise both steady and unsteady dripping and jetting flow

patterns. The dripping regime is obtained at low capillary numbers for small flow
rates Q1 and Q2 and is one of the most widely encountered regimes in microfluidic
applications in the chemical and biological fields, where droplets are used as reaction
chambers. By contrast, the jetting regime is reached at moderate capillary number and
finds use to generate small droplets with applications in drug delivery. In this context,
predicting the size of the droplet d has received considerable attention in microfluidic
studies (Anna 2016). Here, we systematically examine the morphology and dynamics
of droplet flows based on droplet length d, spacing L and velocity VD for a wide range
of flow rates and three different fluid pairs with a highly viscous continuous phase.

4.1. Droplet mobility
We first examine the velocity VD of droplets in the dripping and jetting regimes. To
measure VD, spatiotemporal (x–t) diagrams are generated by tracking the front xF
and rear xR positions of droplets using high-speed imaging. For steady dripping and
jetting flows, the measured front and rear velocities, VF = dxF/dt and VR = dxR/dt, of
all droplets form specific curves that merge further downstream to reach a constant
value VD (figure 3a,b). By contrast, for unsteady dripping and jetting flows, the spatial
evolution of velocity slightly differs from droplet to droplet. For both steady and
unsteady flows, the average droplet velocity VD is compared to the multi-fluid flow
superficial velocity JT = (Q1 + Q2)/h2, such as VD = kDJT , where kD is the droplet
mobility coefficient. The coefficient of droplet mobility kD typically decreases with the
droplet length d and grows with the capillary number of the continuous phase, CaD =
VD⌘2/�12, which controls the thickness of the lubricating layer � between droplets and
walls. Measurements of kD are reported as a function of d/(hCaD) for all fluid pairs
in steady dripping and jetting regimes in figure 3(c) and display an average value
around kD ⇡ 2 in good agreement with the assumption that small droplets travel near
the peak velocity of parabolic flows in square ducts, 2.1JT . Droplet mobility analysis
typically includes droplet deformation, channel confinement and the presence of corner
flows and lubricating films at the walls (Lac & Sherwood 2009; Jakiela et al. 2011;
Nath et al. 2017; Rivero-Rodriguez & Scheid 2018). Here, measurements show that
the mobility kD is enhanced when d/h is small and CaD is large and data suggest that
the average droplet velocity scales as

VD = 2JT . (4.1)

For confined droplets with length d > h, the relationship between film thickness �
and capillary number Ca corresponds to the classic Bretherton problem (Bretherton
1961). In our square microchannels, the normalized film thickness follows the classic
scaling such as �/h = 0.13Ca2/3

D for moderate CaD < 1 (figure 3d). For larger CaD, the
film thickness reaches a plateau �/h ⇡ 0.13 similar to the case of water droplets in
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FIGURE 3. Droplet velocity and normalized film thickness. Droplet velocity VD is
measured on the traces for (a) dripping ((Q1, Q2), fluid pair) = ((1, 4), E5h) and
(b) jetting ((4, 20), E5h) flows (flow rates in µl min�1). (c) Evolution of droplet mobility:
solid line, kD = 2 (E50,A; E5h,E; and E5k,6). (d) Normalized film thickness �/h versus
droplet capillary number CaD: solid line, �/h = 0.13Ca2/3

D (CaD < 1); dashed line, �/h =
0.13 (CaD > 1). Inset: micrographs of deformed droplets: (i) ((0.5, 1), E50), (ii) ((5, 2),
E50) and (iii) ((4, 4), E5h).

silicone oils with significantly larger �12 (Jose & Cubaud 2014). The magnitude of the
prefactor in the relationship between � and CaD depends on flow configurations and
confinement geometry (Wong, Radke & Morris 1995; Balestra, Zhu & Gallaire 2018).
Overall, the mobility coefficient has influence on flow morphology, in particular for
the wavelength � of segmented flows.

4.2. Dripping
We now turn our attention to the morphology of dripping flows based on droplet
length d and spacing L. In particular, we wish to predict the transition to separated
flows when L ! 0 based on fluid and flow parameters. Similar to the case of bubbles,
where the internal viscosity is neglected, the droplet length is estimated as d = VDT2,
where T2 is the pinching time corresponding to the filling of the junction by liquid
L2, T2 = h3/Q2. Introducing the continuous-phase liquid fraction ↵2 = Q2/(Q1 + Q2)
yields a scaling such as d/h = kD/↵2 for the droplet size at low capillary numbers.
At large Ca, however, the influence of viscous forces becomes significant and, for a
given fluid pair, the droplet size also depends on absolute flow velocity. To measure
the influence of Ca, we fix ↵2, and measure the droplet size d as a function of
Ca2 = ⌘2J2/�12 to find a scaling of the form d/h ⇠ Ca�1/3

2 (figure 4). While the
droplet length d scales with (↵2Ca1/3

2 )�1, systematic shifts in data points are observed
based on viscosity ratio � , which suggests the existence of a correction factor Nd
associated with previous scaling. Hence, we curve-fit dimensionless droplet length
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FIGURE 4. Dripping regime morphology with fluid pairs E50 (A), E5h (E) and E5k
(6). (a) Main graph: normalized droplet length d/h; solid line, d/h = 0.17(↵2Ca1/3

2 � 1/5)�1.
Bottom inset: d/h versus ↵2Ca1/3

2 ; solid line, d/h = 0.33(↵2Ca1/3
2 )�1. Top inset: correction

factor; solid line, Nd = 0.17��1/5. Micrographs (flow rates in µl min�1): (i) (Q1, Q2) =
(10, 1), (ii) (1, 1) and (iii) (0.1, 1). (iv) Plot of d/h versus Ca2 for fixed ↵2 = 0.4; solid
line, d/h = 0.85Ca�1/3

2 . Micrographs from (1) to (3): (Q1, Q2) = (1.5, 1), (3, 2) and
(6, 4). (b) Normalized droplet spacing L/h; solid line, L/h = 0.1(↵1Ca1/3

2 � 1/5)�1. Bottom
inset: L/h versus ↵1Ca1/3

2 ; solid line, L/h = 0.5(↵1Ca1/3
2 )�1. Top inset: correction factor

NL = 0.1��1/5 (solid line). Micrographs: (i) (Q1, Q2)= (0.1, 2), (ii) (1, 2) and (iii) (10, 2).
(iv) Plot of L/h versus Ca2 for fixed ↵1 = 0.5; solid line, L/h = 0.4Ca�1/3

2 . Micrographs
from (1) to (3): (Q1, Q2) = (1, 1), (2, 2) and (4, 4). (c) Rescaled dimensionless
wavelength (�/h)Ca1/3

2 � 1/5 evolving with ↵1; solid line, (�/h)Ca1/3
2 � 1/5 = 0.17(1 � ↵1)

�1 +
0.1↵�1

1 . Micrographs: (i) (Q1, Q2) = (5, 1), (ii) (1, 1), (iii) (0.2, 1) and (iv) (0.1, 1).

d/h as a function of Nd(↵2Ca1/3
2 )�1 for each fluid pair and find a weak dependence

on viscosity ratio Nd = 0.17��1/5 (figure 4). Finally, the normalized droplet length for
all fluid pairs is shown to scale as

d/h = a(↵2Ca1/3
2 � 1/5)�1, (4.2)
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where the constant a = 0.17. As expected, the unsteady dripping regime is found
for large droplet length d; however, a criterion solely based on d is not sufficient to
predict regime transition, as steady and unsteady regimes are found in the same area
(figure 4a).

The spacing L between droplets can be estimated using a similar argument in
conjunction with mass conservation of segmented flows over a unit cell of equivalent
wavelength � = d + L and period T , where droplet length d ⇠ Q1T/h2 and spacing
L ⇠ Q2T/h2, which leads to the scaling d/L ⇠ Q1/Q2 = '. While a detailed discussion
of the aspect ratio d/L is presented later, the relationship d/L ⇠ ' in turn yields
L/h ⇠ (d/h)/' ⇠ (↵1Ca1/3

2 � 1/5)�1, where ↵1 = Q1/(Q1 + Q2) is the dispersed-phase
volume fraction. Similar exponents are found experimentally with L/h ⇠ Ca�1/3

2 for
fixed ↵1 and correction factor NL = 0.1��1/5 for different fluid pairs. Overall, the
normalized spacing experimentally follows

L/h = b(↵1Ca1/3
2 � 1/5)�1, (4.3)

where b=0.1 (figure 4b). Data points depart from previous scaling for spacing L/h<1
and ↵1Ca1/3

2 � 1/5 > 0.1 as the flow becomes concentrated and finally leads to unsteady
dripping regime for L/h < 0.5.

The equivalent wavelength � = d + L of dripping flows is therefore estimated
according to �/h ⇡ a(↵2Ca1/3

2 � 1/5)�1 + b(↵1Ca1/3
2 � 1/5)�1, which can be rewritten

as (�/h)Ca1/3
2 � 1/5 ⇡ a↵�1

2 + b↵�1
1 = 0.17(1 � ↵1)

�1 + 0.1↵�1
1 . When the rescaled

dimensionless wavelength (�/h)Ca1/3
2 � 1/5 is plotted as a function of ↵1, the data

points for the three fluid pairs collapse together and agree well with the derived
formula (figure 4c). The minimum � is found at ↵1 = 0.5 at the transition between
diluted and concentrated droplet flows. As droplets are generated at the fluid junction
in the dripping regime, our work shows that segmented flows are essentially dominated
by the liquid fraction with small correcting factors based on capillary number and
viscosity ratio. As the side flow rate Q2 increases, the capillary breakup instability
becomes convected further downstream in the jetting regime.

4.3. Jetting
The jetting regime corresponds to droplet formation through the breakup of an initially
stable central stream at a distance LS from the junction. Droplets are periodically
emitted from the central stream, which we label primary flow, due to the development
of Rayleigh–Plateau instabilities (figure 5a). In this section, we combine periodicity
and instability analysis to understand the dynamics and morphology of jetting flows.

4.3.1. Primary flow
The primary flow is modelled as a time-invariant core–annular flow without

significant development of instability patterns near the fluid junction. Flow characteris-
tics include the inner-stream diameter ", average velocities of both inner and outer
streams, V1 and V2, and interfacial velocity Vi, which depends on control parameters,
including flow rates and fluid viscosities, Q1, Q2, ⌘1 and ⌘2. We consider a simplified
one-dimensional model of core–annular flow in a circular channel, which provides
a useful approximation to a compact square channel, especially when " is small.
Following the analysis of Cao et al. (2003) in the Stokes regime, the stream diameter
" is determined by the flow-rate ratio ' and the viscosity ratio � according to

"

h
=
s

1 + ' �
p

1 + '��1

2 + ' � ��1
. (4.4)
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FIGURE 5. Jetting regime with fluid pairs E50 (A), E5h (E) and E5k (6). (a) Micrographs
of jetting streams (flow rates in µl min�1): (i) (Q1, Q2) = (0.1, 10), (ii) (0.5, 20),
(iii) (1, 40) and (iv) (2, 40) (fluids E5h). (b) Inner-stream size "/h as a function of
'� ; solid line, "/h = (1 + ('�)�1/2)�1/2; dot-dashed line, "/h = ('�)1/4; dashed lines,
equation (4.4). Top inset: schematics of velocity profile in a core–annular flow. Bottom
inset: Vi/J2 as a function of '� ; solid line, equation (4.6). (c) Influence of '. (i) Droplet
emission frequency f ; solid line, fh/Vi = 1.5. (ii) Normalized droplet length d/h; solid line,
d/h = '1/3; dashed line, d/h = '1/3 + '/2. (d) Comparison with linear instability analysis.
(i) Plot of d/" as a function of ' for various � . (ii) Average d/" versus � ; solid line,
Tomotika’s theory. (iii) Mode of maximum instability p"/(d + L) versus '. Average mode
as a function of � ; solid line, Tomotika’s theory. (e) Plot of L/h versus V1; solid line,
L/h = 1.3V�1/3

1 . Micrographs for fixed ' = 0.1: (i) ((2, 20), E50), (ii) ((1, 10), E5h) and
(iii) ((0.2, 2), E5k).

The diameter " allows for estimating average velocities according to V1 =4Q1/(p"2)
for the inner stream and V2 = 4Q2/(4h2 � p"2) for the outer stream. As the inner-
stream diameter " is seen to slightly increase along the flow direction due to entrance
effects and instability development (figure 5a), the mean " is measured in the middle
of the stable stream at x = LS/2, and the data show excellent agreement with (4.4), in
particular for low values of " at different � (figure 5b). An asymptotic behaviour is
found for low viscosity ratios � ⌧ 1 by simplifying (4.4) according to

"/h = (1 + ('�)�1/2)�1/2, (4.5)

which is a function of '� only and agrees well with experimental data. Over
our range of parameters, locally stable jets are observed for '� ⌧ 1 when
(4.4) further reduces into a scaling of the form "/h ⇡ ('�)1/4 (figure 5b). This
simple relationship provides insights into the dependence of V1 on Q1 and Q2 as
V1 ⇠ 4(Q1Q2)

1/2/(ph2� 1/2), which is proportional to the geometrical mean of injection
flow rates.

,
#*

" 
#2

5�
5�

7B
#!

�9
DD

$C
���

*
*

*
 �

2!
�B

:5
8�

 #
B8

��
#B

� 
�/

0
.

1�
/D

#"
+�


B
##

��
�#

"�
�


��2
"�

��
��

�2
D��

��
�


��
	�

�C
(�

��
�D

�D#
�D9

��
�2

!
�B

:5
8�

��
#B

��
D�

B!
C�

#7
�(

C�
��2

)2
: 2

� 
��

2D
�9

DD
$C

���
*

*
*

 �
2!

�B
:5

8�
 #

B8
��

#B
��

D�
B!

C 
�9

DD
$C

���
5#

: #
B8

��
� 

��
�	

��7
!

 �
��

� 
��

��

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.1009


From droplets to waves in viscous microfluidic flows 887 A27-11

An important characteristic of separated flows is the interfacial velocity Vi. For a
core–annular flow in a circular pipe, analytically solving Stokes equations yields Vi =
2V2, where V2 = 4Q2/(4h2 � p"2) is the average velocity of the outer stream. For
square channels, we approximate Vi using (4.5) and obtain

Vi = 2[1 + (4/p � 1 + 4/p('�)�1/2)�1]J2, (4.6)

where J2 = Q2/h2. This expression is found to overlap with the exact solution of (4.4)
and clearly shows that the approximation Vi/J2 ⇡ 2 is valid for '� < 0.1 (figure 5b,
bottom inset).

4.3.2. Droplet formation in jetting
Similar to a wave phenomenon, the periodic droplet emission pattern in the jetting

regime is characterized by a frequency f , droplet velocity VD and wavelength �=VD/f .
As droplets are generated through the breakup of the inner stream due to growing
disturbances propagating along the flow direction, the droplet emission frequency
f is expected to scale as the interfacial wave frequency before breakup. Previous
work on the development of capillary and inertial waves of viscosity-stratified flows
(Hu & Cubaud 2018) showed direct proportionality between wave frequency f and
characteristic shear rate, such as f ⇠ Vi/h. Here, we normalize f with Vi/h and probe
the influence of the flow-rate ratio ' on the droplet emission (figure 5c(i)). For all
fluid pairs, the normalized droplet emission frequency in the jetting regime remains
more or less constant according to

fh/Vi ⇡ 1.5. (4.7)

Information about droplet frequency f and jet diameter " in turn allows for estimating
the final droplet length d using mass conservation before and after the inner-stream
breakup. Balancing the equivalent droplet volume of the inner stream ⌦1 = Q1/f with
a spherical droplet approximation ⌦D = pd3/6 yields normalized droplet length d/h ⇡
[4J1/(pVi)]1/3 = {3/4'[1 + ('�)�1/2]�1}1/3, which is a function of flow-rate ratio '
and viscosity ratio � and can be simplified as

d/h ⇡ '1/3 (4.8)

when '� ⌧ 1. Figure 5(c)(ii) shows good agreement with experimental data for
small droplets, d/h < 1. A departure from the scaling relationship is observed for
larger droplets d/h > 1, which are typically found in the unsteady jetting regime
(figure 5a(iv)). Droplets in this case become significantly deformed due to wall
confinement and large capillary numbers. Overall, all data points are well fitted with
an expression of the form d/h = '1/3 + '/2.

Therefore, for very small viscosity ratio � ⌧ 1, the droplet length d in the jetting
regime does not depend on inner or outer fluid viscosities. To better understand this
result, we investigate the relationship between droplet size d and jet diameter " in
the light of Tomotika’s theory of Rayleigh–Plateau instability for an initially circular
thread in a quiescent fluid (Tomotika 1935). In particular, in the steady jetting regime,
the quantity d/" is found to remain fixed around a mean value that depends on the
viscosity ratio � (figure 5d(i)). To compare our result with linear stability analysis, we
use the reported modes of maximum instability xT = k"T/2 as a function of � , where
k = 2p/�T and �T is the most unstable wavelength. Considering mass conservation
between the jet varicose of wavelength �T and the resulting droplet of diameter
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dT , �Tp"2/4 = pd3
T/6, together with �T = p"T/xT , allows us to derive the expected

dT/"T = [3p/(2xT)]1/3, which is a constant for each fluid pair and is compared with
experimental data in figure 5(d)(ii). Deviation is observed for the fluid pair E5k, as
droplets are significantly elongated along the flow direction due to the large Ca of
the outer fluid.

To circumvent the limitations associated with droplet deformation, we measure
the dispersed flow wavelength � = d + L in figure 5(d)(iii) to directly compare
experimental x = p"/� and theoretical xT for each fluid pair (figure 5d(iv)) and find
the agreement fairly satisfactory. It is a remarkable property of the jetting regime that
the dimensionless droplet length d/h ⇠ '1/3 at very small viscosity ratio � ⌧ 1 does
not depend on � due to the balance of the jet diameter " and the mode of maximum
instability of confined microjets. A somewhat equivalent property d/h ⇠ '1/2 was
also observed for the counterpart situation where viscosity ratio � � 1, albeit this
behaviour was interpreted as a saturation of the mode of maximum instability due
to thread diameter " being independent of � (Cubaud & Mason 2008). Here, the
experimental p"/� is also found to remain stable in both steady and unsteady jetting
regimes, as droplet length d and spacing L compensate one another to match the
theoretical wavelength �T . This observation highlights the importance of the viscosity
ratio in the thread breakup process compared to external flow configurations. Here,
we find that droplets in the jetting regime are always densely arranged with fine
variations of L/h < 1. Experimental data show a relationship between droplet spacing
L and the inner-stream average velocity V1 according to L/h ⇠ V�1/3

1 (figure 5e),
suggesting that a faster inner stream leads to a shorter distance between droplets,
which eventually leads to the formation of a continuous stream in the separated flow
region.

4.4. Aspect ratio of dispersed flows
While dripping and jetting flows display specific behaviours, both regimes transition
to separated flows when L ! 0, and the linear aspect ratio d/L provides a useful
method to characterize a wide range of segmented flows (figure 6a). Using continuity
applied to a one-dimensional model of a repetitive unit of dispersed flows of length
� over a period T , such as dh2 ⇠ Q1T and Lh2 ⇠ Q2T , yields the simple relationship
d/L ⇠ ', which accurately represents the behaviour of dripping flows as well as
jetting flows when d > h (figure 6b(i)). However, similar to our previous discussion
of d/h and L/h, while flow-rate ratio ' captures the major role of the relative flow
rates (figure 6a(i,ii)), absolute flow rates also play a minor role in the morphology
of dispersed flows as shown in figure 6(a)(iii,iv) with a visualization of flow patterns
having similar ' but various Ca2. To capture the influence of Ca2, we plot the aspect
ratio d/L as a function of Ca2 for experiments having the same flow-rate ratio '

and find a relationship of the form d/L ⇠ Ca1/3
2 (figure 6b(ii)). Finally, the parameter

'Ca1/3
2 permits rescaling of dripping flows according to

(d/L)dripping = 4.5'Ca1/3
2 . (4.9)

In contrast to the dripping regime, where d/L can be as small as 10�1, the ratio d/L
in the jetting regime saturates at a constant value of around 0.5 for 'Ca1/3

2 ⌧ 1. This
behaviour is expected since d/L = d/(�� d) and both d/" and �/" are fixed for each
fluid pair. Overall, d/L in the jetting regime can be represented with the following
formula:

(d/L)jetting = 0.5 + 4.5'Ca1/3
2 . (4.10)
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FIGURE 6. Aspect ratio of dripping and jetting regimes for fluid pairs E50 (A), E5h (E)
and E5k (6). (a) Micrographs of dispersed flows with various d/L for (i) dripping with
Ca2 = 0.24, (ii) jetting for Ca2 = 1.2, (iii) dripping with ' = 0.5 and (iv) jetting with ' =
0.2. (b) Influence of ' and Ca2 on aspect ratio d/L for cases shown in (a). (c) Evolution
of d/L as a function of 'Ca1/3

2 for all cases; solid line, d/L = 4.5'Ca1/3
2 ; dashed line,

d/L = 0.5 + 4.5'Ca1/3
2 .

For relatively large flow-rate ratio ', jetting data points align with the dripping
curve, suggesting similar flow morphology despite widely different droplet generation
mechanisms (figure 6c).

The parameter 'Ca1/3
2 can also serve as an estimation of the transition from steady

to unsteady dripping and jetting regimes, as well as to wave regimes as indicated with
dashed lines on figure 2. The critical value of 'Ca1/3

2 for flow transition slightly vary
for each fluid pair, whilst it remains of the same order of magnitude. A universal
criterion for the transition between dispersed and separated flows, however, is still
missing, as the condition (d/L) ! 1 is not sufficient to predict flow regimes. In the
following section, we examine the peculiar behaviour of separated flows and wave
regimes, and we develop an original method to delineate multiphase flow patterns in
microchannels.

5. Separated flows
5.1. Capillary and inertial waves

Separated flow regimes consist of stable and wavy core–annular flows with a rich
collection of flow morphologies. Two main types of waves are identified: (i) inertial
waves, whose wavelengths � reach a maximum value near the fluid junction and then
decrease along the flow direction, and (ii) capillary waves, where � monotonically
increases along the flow direction and saturates at a relatively large value further
downstream (figure 7a). The characteristic wavelength �/h of each experiment is
measured at the plateau region downstream at around x/h ⇠ 10 for both types of
waves. Increasing the inner-stream Reynolds number Re1 = ⇢1V1h/⌘1 allows us
to examine the cross-over between wave regimes with �/h ranging from 1 to 10
(figure 7b).
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FIGURE 7. Characteristics of wave regimes. (a) Wavelength of capillary wave and inertial
wave is measured downstream. (b) Evolution from capillary wave to inertial wave as
Re1 increases. (c) Wave emission frequency f = 1.5Vi/h. Insets: spatiotemporal diagrams.
(d) Evolution of wave aspect ratio �/"2 as a function of Wf ; solid line, �/"2 = 2.5. Top
inset: capillary wave dispersion relationship k = [(⇢1 + ⇢2)/�12]1/3!2/3 (dashed line) and
k = 20 mm�1 (solid line). Bottom inset: viscosity ratio coefficient W = 0.085��1/2 (solid
line). (e) Wave celerity calculated according to (5.4) agrees well with experimental results.
Bottom inset: inertial waves show c/Vi = 1.5 over a wide range of Re1.

Another important parameter is the wave emission frequency f , which is measured
from spatiotemporal diagrams with f = 1/T , where T is the wave time period that
is averaged over multiple cycles T = t/n (figure 7c). Similar to our previous work on
two-layer viscous stratifications (Hu & Cubaud 2018), the wave frequency f is related
to the interfacial velocity Vi of the primary flow, i.e. stable core–annular flow, and
direct proportionality between f and Vi is recovered for both capillary and inertial
waves such as

f = 1.5Vi/h. (5.1)

This relationship is identical to that of the jetting regime for the droplet emission
frequency and provides insights into the connection between wave and droplet flows.

A common approach to study the time–space correlation of propagating waves
is to examine the dispersion relationship such as D(k, !) = 0, where k = 2p/�
is the wavenumber that measures the wave spatial extension and ! = 2pf is the
angular frequency that characterizes temporal periodicity. Therefore, we investigate the
dispersion relationship of confined capillary waves in viscous liquid–liquid systems by
plotting wavenumber k as a function of angular frequency ! for all three fluid pairs.
In general, data points follow the typical dispersion relationship derived for capillary
waves propagating at a flat interface, such as k = [(⇢1 + ⇢2)/�12]1/3!2/3 (figure 7d, top
inset), with good agreement for the coefficient [(⇢1 + ⇢2)/�12]1/3 ⇡ 0.12 mm�1 s2/3
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and the exponent 2/3 associated with !. As we suspect data scattering due to
various viscosity ratios � and interfacial curvatures 2/", we rewrite the dispersion
relationship as � = [2p�12/(⇢1 + ⇢2)]1/3f �2/3 using wavelength � and frequency f
directly and introduce the dimensionless viscous layer of thickness "2/h = (1 � ")/(2h)
to consider the evolution of the dimensionless wavelength as �/"2, by analogy with
shallow-water waves. We then plot �/"2 as a function of f and fit data according to
�/"2 = 2[2p�12/(⇢1 +⇢2)]1/3(Wf )�2/3/h, where the coefficient W = 0.085��1/2 depends
on the viscosity ratio � (figure 7d, bottom inset). Overall, the experimental results
collapse onto a single curve defined with a modified dispersion relationship that reads

�/"2 = 2[2p�12/(⇢1 + ⇢2)]1/3(0.085��1/2f )�2/3/h, (5.2)

and can be approximated with �/"2 ⇡ 10.4h�1[2p��12/(⇢1 + ⇢2)]1/3f �2/3. This
relationship indicates the decrease of wavelength � as the frequency f grows in
the capillary regime. Eventually, for large frequencies, the normalized wavelength
�/"2 reaches the plateau associated with inertial waves according to

�/"2 = 2.5. (5.3)

The modified dispersion relationship is used to derive the wave propagation celerity
cmodel as a function of control parameters according to the basic wave equation c = �f
such as

cmodel ⇡ 12


2p��12

(⇢1 + ⇢2)h

�1/3 1 � "⇤

(4 � p"⇤2)1/3
J1/3

2 , (5.4)

where "⇤ = "/h is the dimensionless inner-stream diameter. To measure the
experimental wave celerity, we digitally track the motion of wave crests using
image processing. The spatial evolution of c(x) is relatively similar to �(x) and
reaches a constant value in the observation channel. Overall, a good agreement
is found between measured celerity c and cmodel derived by (5.4) (figure 7e). In
addition, a simplified celerity model can also be written for W = 1 as cCAP =
2{3p�12/[(⇢1 + ⇢2)h]}1/3(1 � "⇤)(4 � p"⇤2)�1/3J1/3

2 . For inertial waves, we find that
the celerity is comparable with interfacial velocity as c/Vi ⇡ 1.5 over a wide range
of Re1 (figure 7e, inset).

5.2. Wave breaking
Interfacial viscous waves evolve and typically break with the entrainment of viscous
filamentous structures from wave crests. While ligament formation and subsequent
droplet generation are widely encountered in industrial and natural fragmentation
processes, including spray formation (Marmottant & Villermaux 2004) and droplet
splash (Wang & Bourouiba 2018), less is known about the extrusion of viscous
filaments in confined microsystems. Here, we discuss two types of ligament formation:
rolling in the capillary regime, and shearing in the inertial regime (figure 8). Both of
these processes result from the large shear force exerted by the fast inner stream on
wave crests and the local wave structure that depends on wavelength �.

The rolling ligament process (figure 8a(i)) is mainly observed for long waves
with wavelength �� h in the capillary regime and corresponds to the emission of
a rolling tip which grows into a rotating droplet connected to the wave crest with
a viscous thread. The rolling behaviour is induced by the viscous torque resulting
from the parabolic velocity profile of the inner stream in the flow cells. As droplets
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FIGURE 8. Viscous ligaments due to wave breaking. (a) Formation process of ligaments
with rolling tips: (i) a pair of ligaments ((Q1, Q2), fluid pair, 1t) = ((100, 10), E5h,
10 ms); (ii) merging ligaments ((70, 4), E5h, 14 ms); (iii) viscous bag ((150, 20), E5h,
10 ms); and (iv) transport of detached viscous tip through a neck, ((250, 10), E5h,
1 ms). (b) Ligament threads: flow rates of (i)–(iv) are Q1 = 70, 150, 300 and 600,
respectively, and Q2 = 200, E50. (c) Schematic of ligament arrangement in cross-section
view: (i)–(iii) normalized grey-scale of cross-flow direction, where local peaks represent
ligaments.

migrate towards the wave trough, their velocity remains in slight excess of the wave
celerity while the connected thread wraps around the droplets. Droplets eventually
break from their ‘umbilical cords’, supplying viscous material for growth through a
complex thread thinning process. When the neck is narrow and a pair of ligaments
are phase-locked, filaments can merge into a single ligament that travels near the
centreline of the core–annular flow (figure 8a(ii)). Intriguing viscous bag formation
mechanisms are also observed, where a rim of viscous material grows into a thin
tubular shell. The viscous bag quickly destabilizes and interacts with ligaments and
droplets further downstream (figure 8a(iii,iv)).
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In the inertial regime, the breaking of short waves with wavelength � ⇠ h is
characterized by the regular detachment of continuous streams of viscous material
from the wave crest. In contrast to the capillary regime, filaments remain aligned
with the wave crest due to the inertia associated with the fast inner stream
and the tip velocity is much larger than the wave celerity. In practice, multiple
ligament formation is enhanced by increasing the inner-stream flow rate as shown
in figure 8(b). An important quantity of high-viscosity fluid is convected through
filament detachment, resulting in the spatial depletion of the outer viscous layer with
a progressive migration of the wave crest towards the walls. This process produces
the self-alignment of ligaments, where newborn ligaments are always located closer
to the centreline. Three cross-section grey-scale profiles are included in figure 8(c) at
different locations to document the regular increase of the number of ligaments along
the flow direction. Such highly complex flow structures can also experience secondary
destabilization processes with the coalescence of waves further downstream.

6. Comparison and transition
6.1. Initial stable length

The evolution of the stable length LS of core–annular flows with flow rate provides
useful information about flow regimes and transitions between dripping, jetting
and wavy flow patterns. To measure the average length LS for a given set of control
parameters, we superpose approximately 200 frames of a high-speed video to produce
a composite image and visualize the average envelope of flow to measure the length
of the invariant inner stream (figure 9a(i)). While the length LS ⇠ 0 remains constant
in the dripping regime, LS increases with flow velocity in the jetting regime and
decreases with flow rate in the wave regimes.

To illustrate this behaviour, we plot normalized initial stable length LS/h as
a function of inner-stream flow rate Q1 for fixed outer-stream flow rate Q2 on
figure 9(a)(i), which corresponds to the flow patterns shown on figure 9(b). The
length LS monotonically increases with Q1 in the jetting regime until no disturbance
can be observed in the field of view, i.e. for LS/h > 16, which corresponds to the
stable core–annular flow in this study. Further increase of Q1 leads to the wave regime,
where LS decreases with flow rates of injection. Such non-monotonic variation of LS
is also observed in open jets as flows evolve from dispersed to continuous regimes
(Brennen 2005). To clarify the role of the inner-stream diameter " in the stable length
LS, a similar analysis is conducted on figure 9(a)(iii) for flows having a fixed ' but
various absolute flow rates as shown in figure 9(c). In the dripping regime, the initial
length LS ⇠ 0 at small flow rates, while for moderate flow rates, LS sharply increases
in the jetting regime, in particular above a critical value of outer-stream capillary
number Ca2 ⇠ 0.5, which is in good agreement with previous studies in capillary
tubes (Utada et al. 2008).

The presence of a critical value Ca2 for the large growth of LS suggests a distinction
between slow flows, where LS is independent of " and follows a scaling of the total
capillary number CaT as LS/h ⇡ 3Ca2

T (figure 9d, bottom inset), and fast flows,
where the stable length normalized with the jet circumference LS/(p") depends on
Ca2 according to LS/(p") = 27Ca1/2

2 (figure 9d, top inset), in the jetting regime and
collapse onto a master curve defined as LS/(p")=7/' in the wave regimes (figure 9d).
A similar behaviour was observed for the development on inertial waves in miscible
viscous-stratified microflows (Hu & Cubaud 2016). In practice, we find that the initial
stable length LS growths with flow rates for convective instabilities and decreases
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FIGURE 9. Initial length LS for fluid pair E50. (a)(i) How LS is measured from image
processing. (ii) Non-monotonic evolution of LS/h is observed for fixed Q2 = 100 µl min�1

and various Q1. (b) Micrographs corresponding to (a). (c) Normalized LS/h shows a
sudden increase when Ca2 > 0.5 for fixed ' = 0.3. (d) Dimensionless initial length LS/(p")
for wave regime follows LS/(p") = 7/' (solid line), while jetting regime with Ca2 > 0.5
follows LS/(p") = 27Ca1/2

2 , as shown in top inset. Bottom inset: jetting regime for Ca2 <
0.5 and LS/h = 3Ca2

T (solid line).

with flow velocities for absolute instabilities. Further theoretical and numerical work
would provide more insights on the dependence of LS with control parameters. Better
understanding the role of the stable length is important for hydrodynamic control of
flow instabilities in microfluidic systems.

6.2. Periodicity of all regimes
In this section, we combine the periodic pattern description of dripping and jetting
flows with capillary and inertial wave regimes. We discuss, in particular, the evolution
of quantities such as pattern frequency f , wavelength � and velocity V across all flow
regimes.

6.2.1. Temporal and spatial periodicity – frequency and wavelength
We first examine the pattern formation frequency f of dispersed and wave flow

regimes. For a given fluid pair, we present the evolution of the time period T = 1/f
where each curve represents experiments conducted at fixed outer-stream flow rate Q2
and varying inner-stream flow rate Q1 (figure 10a (inset)). It is evident from this graph
that (a) the inner-stream flow rate Q1 does not significantly influence the period T
of jetting and wave regimes but reduces the period T of dripping flows, and (b) the
outer-stream flow rate Q2 decreases the period for all regimes, suggesting that Q2
sets the level of T in general. These observations are consistent with our previous
analysis of jetting and wave emission frequencies, where f ⇡ 1.5Vi/h, with Vi/h being
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FIGURE 10. Frequency and wavelength of dripping, jetting and wave regimes for fluid
pairs E50 (A), E5h (E) and E5k (6). (a) Normalized frequency fh/Vi as a function of
Cain: solid line, fh/Vi = 1.5; dashed line, fh/Vi = 1.5(1 + 0.25Ca�3/4

in )�1. Inset: evolution
of T with Q1 as Q2 is varied, fluid pair E50. (b) Normalized wavelength �/h as a function
of ': solid line, �/h = 1.5('1/4 + '/3); dashed line, �/h = 1.5.

largely determined by Q2. Therefore, we use this reference and display the normalized
frequency fh/Vi as a function of the injection capillary number Cain = J1⌘2/�12, where
J1 = Q1/h2, for all fluid pairs across all regimes in figure 10(a). As expected, the data
for the jetting and wave regimes collapse onto the curve fh/Vi = 1.5. In contrast, the
dripping regime features a smaller dimensionless frequency f that is curve-fitted with

fh/Vi = 1.5(1 + 0.25Ca�3/4
in )�1, (6.1)

which reaches a plateau of approximately 1.5 when Cain > 1. The upper limit of
the dripping frequency is therefore given by f ⇡ 1.5Vi/h, which is independent of
interfacial tension but influenced by flow rates and fluid viscosities. Remarkably, the
unsteady dripping and jetting regimes are observed in the same region when the two
branches of steady dripping and jetting merge at the transition into wave regimes.

The connection between dispersed and separated flows is also apparent when
the periodic pattern wavelength � is displayed as a function of the flow-rate ratio '
(figure 10b). Regions of steady dripping and wave pattern data are clearly separated by
a curve defined with the collapse of jetting and unsteady dripping data points. Hence,
the jetting flow regime, which displays intermediate properties between separated and
dispersed flows, serves as the ‘interface’ between widely different flow regimes. The
transitional curve can be inferred from the steady jetting regime for low '. In this
case, the wavenumber p"/� remains constant for a given fluid pair, which yields
the following scaling for dimensionless wavelength: �/h ⇠ "/h ⇠ '1/4. As the upper
branch of the curve corresponds to unsteady dripping at large ', the wavelength is
then estimated as �= VDT , leading to �/h = 2(J1 + J2)/(1.5Vi)⇠ 1 +' ⇠'. Combining
both regimes, �/h in jetting and unsteady dripping is fitted with �/h = 1.5('1/4 +'/3).
Overall, it is conceptually significant that the transition does not depend on fluid
properties, such as interfacial tension and fluid viscosities when viscosity ratio � ⌧ 1,
but only on flow rates Q1 and Q2. A general criterion for the transition, however, is
still missing, as the intrinsic wavelength � displays complex behaviour as a function
of both fluid and flow properties.
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FIGURE 11. Evolution of pattern characteristics for dispersed to separated regimes, E5h
(flow rates in µl min�1). (a) Evolution from dripping to wave regimes with fixed Q2 = 2.
(i) Micrographs and corresponding spatiotemporal diagrams at fixed Q2 for varying Q1.
Influence of Q1 on (ii) period T , (iii) wavelength �/h and (iv) propagation velocity V .
Critical Q1 = 30 for dripping–wave transition. (b) Evolution from jetting to wave regime
with fixed Q2 =10. (i) Micrographs and corresponding spatiotemporal diagrams at fixed Q2
for varying Q1. Influence of Q1 on (ii) period T , (iii) wavelength �/h and (iv) propagation
velocity V . Critical Q1 = 55 for jetting–wave transition.

6.2.2. Droplet–wave flow transition
To provide an overview of the evolution of the flow pattern features and probe

the wave relationship � = VT at the droplet–wave flow transition, we consider two
type of cross-overs: (a) the dripping–capillary wave transition and (b) the jetting–
inertial wave evolution, as shown in figure 11. Since, in general, the outer flow rate
Q2 characterizes the magnitude of emission frequency f , we document flow evolution
when the inner flow rate Q1 is varied and the outer flow rate Q2 is fixed, according to
Q2 = 2 µl min�1, to explore the dripping–capillary branch and Q2 = 10 µl min�1 to
examine the jetting–inertial wave transition. The changes in period T and wavelength
� are shown as functions of Q1 for both cases in figure 11(a,b)(ii),(iii) along with
results of previous analysis, which are plotted in dashed lines for disperse flows and
solid lines for separated flows for clarity.

For the dripping–capillary wave evolution, the non-monotonic variation of wave-
length � results from the initial decrease of period T with Q1 in the steady dripping
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regime until a minimal value is reached when the volume fraction of L1 ↵1 = 0.5 with
Q1 = 2 µl min�1. Larger values of Q1 correspond to the concentrated droplet regime
and � grows with Q1 until attaining the length of a capillary wave in the unsteady
dripping (figure 11a). Finally, the length of capillary waves decreases with Q1 as
previously discussed. For the jetting–inertial wave evolution, the wavelength �= VDT
monotonically increases with Q1 since VD ⇠ J1 + J2 and T saturates near a constant
value for the jetting regime (figure 11b). When the wavelength of unsteady jetting
grows to that of a capillary wave, the streams separate and the flow progressively
transitions from the capillary to inertial wave regime with a decrease of spatial
period �.

In contrast to the evolution of the spatial and temporal periods, � and T , the
behaviour of the periodic pattern velocity V is similar for both transitions and is
characterized by a maximum velocity VD = c at the cross-over between dispersed and
separated flows, as seen in figure 11(a,b)(iv). Indeed, the velocity of dispersed flows
VD scales with JT , which increases with Q1, and the celerity of waves c decreases
with Q1. Therefore, flow patterns adopt the branch having the smaller velocity
between wave and droplet regimes, which minimizes dissipation. For example, the
fast capillary waves propagating in the dripping and jetting regimes are damped by
the formation of relatively slow droplets further downstream (figure 3b). Once the
equivalent droplet velocity VD surpasses the wave celerity c, a wavy–core–annular
flow can form. The monotonic evolution of velocities in dispersed and separated flow
regimes together with the simple identity VD = c at the transition provides a useful
criterion to predict flow regime selection.

6.3. Criterion for the transition from dispersed to separated flows
We now generalize the presence of a maximal velocity VD = c at the transition between
dispersed and separated flow regimes to develop a functional relationship to predict
the critical flow rates for the transition. For any given flow rates and fluid viscosities
(Q1, Q2, ⌘1, ⌘2), velocities VD and c can be expressed based on control parameters to
develop an expression for the function

� = VD/c. (6.2)

Assuming the wave adopts the typical capillary wave celerity c = cCAP at the transition
and the droplet velocity scales with the average flow velocity according to VD = 2JT ,
the critical flow rates at the transition when � = 1 are expressed as a function of the
flow-rate ratio ' according to

Q⇤
2 = M(⇢, �12, h)F(', �)h2 (6.3)

and Q⇤
1 = 'Q⇤

2. The function M is defined as

M(⇢, �12, h) =


3p�12

(⇢1 + ⇢2)h

�1/2

(6.4)

and corresponds to a characteristic capillary velocity based on fluid properties and
confinement geometry, whose values for fluid pairs E50, E5h and E5k are 0.12 m s�1,
0.15 m s�1 and 0.16 m s�1. Therefore, the quantity Mh2 in (6.3) represents a
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FIGURE 12. Parameter study of transition curves. (a) Influence of �12 (mN m�1) for ⇢1 =
⇢2 = 1 g ml�1, ⌘1 = 1 cP, ⌘2 = 500 cP and h = 250 µm. (b) Role of � . (c) Evolution
of F(', �) versus ' for various � : solid lines, equation (6.5); dashed line, F(', �) =
0.5(1 + ')�3/2.

characteristic flow rate modulated with the dimensionless function F, which is written
as

F(', �) =


1 � "⇤

(4 � p"⇤2)1/3(1 + ')

�3/2

(6.5)

and depends only on flow-rate ratio ' and viscosity ratio � . This approach allows
us to decorrelate the influence of viscous effects on the primary flow with F and
the role of interfacial tension with M to examine the cross-over between dispersed
and separated flows. The method is employed to generate transition curves based on
external control parameters, and good agreement is found with experimental data as
shown on figure 2.

We also use this technique to examine the expected influence of interfacial tension
�12 and viscosity ratio � on flow map transitional lines (figure 12). For a given set of
densities and viscosities, the variation of �12 modifies M as M ⇠ �

1/2
12 , and an increase

of the region associated with dispersed flow regimes is observed with increasing �12
(figure 12a). In comparison, when all parameters remain fixed while the viscosity ratio
� is manipulated, the transitional lines corresponding to the more viscous inner flow,
i.e. ⌘2/⌘1 ⌧ 1 reaches an asymptotic curve for ⌘2/⌘1 < 10�1 as the size of the highly
viscous core becomes invariant to � in this situation. The calculated transitional
curves are also in good agreement with previous experiments of a more viscous core
(Cubaud & Mason 2008) and closely resemble the transition from dripping droplet
flows to jets obtained through linear stability analysis of coaxial flows (Guillot et al.
2007; Moiré et al. 2017). In particular, the analogy between the results previously
obtained through linear stability analysis for the dripping–wave transition, which
takes place at low outer-stream flow rate, and our criterion based on periodic pattern
velocity is remarkable given the two distinct approaches employed and is promising
for the development of a unifying framework to advance understanding of multiphase
flows in confined microsystems. Over the large range of parameters investigated
here, the plunging of the transition curve at large outer-stream flow rate Q2 is also
observed experimentally with the presence of the stable core–annular flows located in
the separated flow region (figure 12b). Indeed, Q⇤

2 ⇠ Fh2 remains relatively constant
at small ', i.e. at large Q2 and small Q1 (figure 12c). While experiments were
conducted for various viscosity contrasts � at relatively fixed interfacial tension �12,
our analysis suggests the need for additional work on the influence of �12 to refine
predictive capabilities and further probe the effects of fluid properties and channel
geometries on transitional curves.

,
#*

" 
#2

5�
5�

7B
#!

�9
DD

$C
���

*
*

*
 �

2!
�B

:5
8�

 #
B8

��
#B

� 
�/

0
.

1�
/D

#"
+�


B
##

��
�#

"�
�


��2
"�

��
��

�2
D��

��
�


��
	�

�C
(�

��
�D

�D#
�D9

��
�2

!
�B

:5
8�

��
#B

��
D�

B!
C�

#7
�(

C�
��2

)2
: 2

� 
��

2D
�9

DD
$C

���
*

*
*

 �
2!

�B
:5

8�
 #

B8
��

#B
��

D�
B!

C 
�9

DD
$C

���
5#

: #
B8

��
� 

��
�	

��7
!

 �
��

� 
��

��

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.1009


From droplets to waves in viscous microfluidic flows 887 A27-23

7. Conclusion
In this work, we present a comprehensive study of various dispersed and separated

flow regimes using a single reference microgeometry. Immiscible viscosity-stratified
flows with a thin core are produced over a large range of flow rates for various
viscosity contrasts using a hydrodynamic focusing section. The use of fluids having
low interfacial tension �12 and different viscosities � ⌧ 1 enables access to a wide
range of flow phenomena to experimentally characterize hydrodynamic instabilities
over vast flow maps. Over the range of parameters investigated, dispersed flows
are observed for low inner-stream flow rates Q1 with a dripping–jetting transition
based on outer-stream flow rate Q2, and separated flows are found at large Q1
with a capillary–inertial wave regime transition depending on Q2. We systematically
investigate the periodic pattern dynamics of droplet trains and interfacial waves with
analysis of frequency f , celerity c and wavelength �.

In the dripping regime, we show that droplet length d and spacing L primarily
depend on volume fraction ↵1 with minor corrections based on viscosity ratio � and
capillary number Ca2 of side flow. While the dripping wavelength �= d + L reaches
a minimum at half ↵1, separated flow transition occurs for large d and small L. In
the jetting regime, the inner-stream diameter " of locally stable jets is well predicted
analytically, and the frequency of droplet emission f is directly proportional to the
interfacial velocity or characteristic shear Vi/h of a stable core. We demonstrate
that droplet length d depends on flow-rate ratio according to '1/3, and the jetting
wavelength � is in good agreement with the classic theory of capillary breakup at
various viscosity ratios � . Another important aspect is the evolution of the aspect
ratio d/L, which quantifies the linear aspect ratio of droplet patterns and collapses all
droplet data onto a single curve near the separated flow transition at large flow-rate
ratio '.

For waves in the separated flow regime, we analyse the spatial evolution of
wavelength � and identify two regimes corresponding to long capillary waves and to
small inertial wave patterns. In all cases, data indicate that wave emission frequency
is proportional to the interfacial velocity of the primary flow f ⇠ Vi/h, similar to the
jetting regime and previous work on miscible viscous stratifications in microchannels.
We then examine the dispersion relationship D(�, f ) of capillary waves in qualitative
agreement with basic theory and show that the wave aspect ratio �/"2, where "2 is
the thickness of the viscous layer, provides a useful parameter to account for the
role of interfacial curvature and viscosity ratio in the development of capillary waves
during separated flows in square microchannels. Then, the wave equation c = �f is
used to derive a functional relationship for the wave celerity as a function of control
parameters. We finally discuss wave breaking phenomena, which lead to the formation
of ligaments and viscous droplets, and we offer a novel route to continuously emulsify
highly viscous materials in small geometries.

The unified description of dispersed and separated flows provides the means to
better understand flow transitions. We discuss in particular the evolution of the stable
length LS of base flow configurations with velocity in relation to the development
of absolute and convective instabilities. Combining measurements of frequency f and
wavelength � across all regimes highlights the role of the capillary number and the
flow-rate ratio in pattern selection. In turn, this work shows that droplet velocity VD
and wave celerity c meet at their highest value at the flow transition. A criterion
based on periodic pattern velocity is then developed to predict the critical flow rates
for transition in good accord with experimental data, which provides a complementary
approach to linear stability analysis.
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Overall, this study clarifies the role of fluid properties in the development of a
wide range of microfluidic instabilities. Amongst various regimes of interest, the
jetting regime displays dual properties between the dripping and wave regimes, and
the periodic flow velocity is shown to play a major role in pattern selection. Further
theoretical and computational work would help to better understand hydrodynamic
flow transitions to improve the design of microfluidic flow devices in a variety of
situations. Here, the wave regime and wave breaking behaviour expand the scope of
previously known microflow regimes and provide new opportunities for microfluidic
applications.
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