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The dynamics of viscous fluid threads concurrently flowing with miscible solvents is experimentally
investigated in square microchannels. Diffusive fluid threads are found to significantly swell at low flow
velocities due to large specific interfacial area and hydrodynamic lubrication. An approach based on
bounded function analysis of confined thread diameter is developed to model diffusive behavior of
viscosity-differing fluids at the small scale. This work shows the determination of a critical flow rate
associated with each fluid pair and the use of dynamic similarity to calculate diffusion coefficients between
oils and organic solvents. The thread divergence is estimated based on the growth of diffusion layers and
related to diffusion-induced buckling instabilities of viscous threads in parallel flows.
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Fluid threads comprise a broad class of slender viscous
structures that are commonly encountered in industrial
processes, including fiber synthesis [1] and electrospray
[2], and often occur in natural situations, such as during the
coiling of a liquid rope [3–5], or during the capillary
breakup of confined jets [6–8]. While gravity and inertia
play an important role at the large scale, the behavior of two
liquids flowing at the small scale is closely related to the
magnitude of their viscosity coefficients η1 and η2, as well
as interfacial tension γ12 for immiscible fluids or diffusion
coefficient D12 for miscible fluid pairs. Diffusive fluid
displacement in porouslike media have shown the emer-
gence of distinct miscible liquid structures, such viscous
fingers and spikes, depending on the Péclet number Pe
[9,10]. Microfluidic systems provide precise control over
flow geometry and flow rates of injection, and the use of
hydrodynamic focusing sections are practical to investigate
mass transfer phenomena between fluids having similar
viscosities η1 ∼ η2 [11–13]. In the case of large viscosity
contrasts η1 ≫ η2, lubricated threads of fluid L1 can readily
form in a low-viscosity phase L2 using a simple channel
intersection [14]. Miscible core-annular flows display
complex dynamics [15,16], including diffusive and inertial
instabilities [17], as well as viscous buckling instabilities
[18–20], which are of particular interest for the generation
of crimped and helical microfibers [21–23].
Lubricated microfluidic threads also have large specific

interfacial area compared to two-fluid layered flows and
this property offers advantages for the development of
continuous hydrodynamic methods for enhancing
micromixing of viscosity-differing fluids [24] as well as
for examining mass transfer mechanisms with complex
fluids [25]. Determination of diffusion coefficients D12

between fully miscible fluids in the context of large
viscosity contrasts χ ¼ η1=η2, however, requires the use
of advanced experimental techniques [26–28]. Steady-state

measurements and theoretical modeling of D12 at large χ
are also challenging due to the spatial evolution of fluid
viscosity and concentration gradients in the diffusive region
[29]. In addition, numerous fluids of industrial interest,
such as alcohols and polymers, are only partially miscible
and form nonideal, conjugate solutions depending on their
solubility [30]. Therefore, generic microfluidic methods are
needed for the rapid characterization of D12 between fully
and partially miscible fluids made of chemically different
species with various molecular affinities, such as between
nonpolar viscous oils and polar organic solvents.
Here, the thread-forming ability of high-viscosity fluids

is used to examine the relationship between convective and
diffusive transport between high-molecular weight solutes
and low-molecular weight solvents in confined micro-
systems. A method based on novel phenomenological
and mathematical understanding of diffusive fluid threads
in microchannels is developed to determine diffusion
coefficients between fully and partially miscible fluids.
The growth of diffusion layers around the thread is also
shown to induce viscous buckling instabilities in straight
microchannels.
Microfluidic platforms are made of glass and silicon

where square microchannels of height h ¼ 250 μm form an
orthogonal focusing section. The thick fluid L1 is injected
at volume flow rate Q1 into the central channel and the thin
fluid L2 is symmetrically introduced in the side channels at
Q2 using syringe pumps [Fig. 1(a)]. The device is placed on
top of an inverted microscope and illuminated with a
fiber light for high-speed imaging. Fluids are made of
conventional silicone oils and low-molecular weight
alcohols.
Stable threads correspond to steady core-annular flows

with a central stream of width ε0. In the absence of
interfacial tension and neglecting diffusion, solution of
Stokes equation [15] in a circular tube of diameter h

PHYSICAL REVIEW LETTERS 125, 174502 (2020)

0031-9007=20=125(17)=174502(5) 174502-1 © 2020 American Physical Society

https://orcid.org/0000-0002-9296-0783
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.174502&domain=pdf&date_stamp=2020-10-23
https://doi.org/10.1103/PhysRevLett.125.174502
https://doi.org/10.1103/PhysRevLett.125.174502
https://doi.org/10.1103/PhysRevLett.125.174502
https://doi.org/10.1103/PhysRevLett.125.174502


indicates that for large viscosity contrast χ ≫ 1, the
expression for the core diameter ε0 reduces to

ε0
h
¼

�
φ

2þ φ

�
1=2

; ð1Þ

which yields the scaling ε0=h ∼ ðφ=2Þ1=2 for small flow
rate ratio φ ¼ Q1=Q2. Equation (1) provides a useful basis
to examine the behavior of diffusive fluid threads in square
microchannels.
At low flow rates, miscible threads are seen to signifi-

cantly swell and a minimum diameter εM is found in excess
of ε0 as shown on Fig. 1(a). Since the stable diameter ε0
depends on φ, experiments are conducted by fixing the
relative flow rate φ ¼ Q1=Q2 while varying the absolute
flow rate QT ¼ Q1 þQ2. Figure 1(b) shows the spatial
evolution of the normalized central stream width ε=h for
φ ¼ 0.25 when L1 is made 100-cS silicone oil and L2

consists of isopropanol [Fig. 1(c)]. As ε=h grows at the
junction, a minimal value εM is measured in the outlet
channel before widening further downstream. Data show
that εM tends to ε0 at large QT while εM tends to h at small
flow rates. The quantity εM is practical as it provides a
single measurement to characterize the role of diffusion on
thread morphology. Therefore, we examine the influence of
Q1 and QT on the variation of εM for fixed values of φ. On
the one hand, plotting εM as a function of Q1 [Fig. 1(d)]
ungroups iso-φ curves, which appear distinct and bounded
with varying slopes. On the other hand, displaying εM as a
function ofQT [Fig. 1(e)] regroups iso-φ data onto a master
curve at low QT and shows the progressive separation of
each curve from the trend as εM tends to ε0 at largeQT . The
asymptotic behavior of εM for large QT is evident when
represented as a function of φ in conjunction with Eq. (1)
on Fig. 1(f).
As experimental data show that, for a given fluid pair at

fixed φ, εM depends on QT and ranges between 1 and ε0,
we briefly discuss the use of bounded functions to model
the evolution of εM. A simple expression of S-shaped
function corresponds to fðxÞ ¼ 1=ðaþ xbÞ with a > 0. In
the case where a ¼ 1, symmetry properties indicate that
fðxÞ ¼ fCðx−1Þ, where the complementary function
fC ¼ 1-f. Therefore, a bounded function can also be
described using a complementary function of a reciprocal
variable. In general, as f ¼ a−1 when xb → 0, the sign of
variable b indicates whether f tends to a−1 when x → 0 for
b > 0 or when x → ∞ for b < 0. The magnitude of b
corresponds to the steepness of the curve between the
bounded values of 0 and a−1 for f or between 1 and 1-a−1
for fC. Therefore, given the boundary conditions of εM=h, a
complementary bounded function of the form

ε�M
h

¼ 1 − 1

1

1 − ε0=h
þ
�
QT

QC

�−1.5 ð2Þ

is proposed to model thread behavior. The steepness value
of b ¼ −1.5 is found to best fit the overall shape of curves
for all fluid pairs and is therefore postulated as constant. By
contrast, the valueQC corresponds to the offset ofQT and is
specific to each fluid pair. The evolution of εM=h along
iso-φ curves is calculated using Eqs. (1) and (2), and is
displayed as a thin line for each φ curve on Fig. 1(e). In
practice, determination of the fitting parameter QC is made
along iso-φ curves in the (εM=h, Q1) parameter space
displayed on Fig. 1(d) using QT ¼ Q1ð1þ φ−1Þ as indi-
vidual curves are distinguishable and do not overlap with
one another. Finally, observed values of εM=h and predicted
values of ε�M=h are found to closely match as shown in
Fig. 1(g). In conclusion, the method of analyzing bounded
functions along iso-φ curves of diffusive threads permits
the determination of a single kinematic quantity QC
associated with each fluid pair.

FIG. 1. (a) Schematic of diffusive threads. (b) Spatial evolution
of thread diameter ε=h for φ ¼ 0.25, (i) QT ¼ 5, (ii) 10, and
(iii) 25 μL=min with 100-cS silicone oil and isopropanol.
(c) Experimental micrographs corresponding to (b). (d)–(f)
Evolution of εM=h at various φ as a function of Q1, QT , and
φ (see text for details). (f) Comparison of εM=h and ε�M=h
calculated based on Eq. (2). Solid line: εM=h ¼ ε�M=h.
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To better understand the relationship betweenQC and the
intermolecular coefficient of diffusion D12, we apply the
iso-φ technique to fully miscible silicone oil fluid pairs and
we examine a few soluble silicone oil and alcohol fluid
pairs as shown in Fig. 2(a). In each case, a single critical
flow rate QC is found to closely fit data for each fluid pair.
The diffusion coefficient D12 between a solute made of
large molecules having hydrodynamic radius R1 and a
solvent of low-molecular weight having viscosity η2 can
be inferred using the Stokes-Einstein equation,
D12 ¼ kT=ð6πη2R1Þ, where k is the Boltzmann constant
and T is the temperature [31]. Hydrodynamic modeling of
D12 is useful for the case of fully miscible fluids having
similar chemical affinity, such as silicone oils of various
molecular weights, where the hydrodynamic radius is
assumed to scale as R1 ∼ η0.341 based on the manufacturer’s
data sheet (Gelest) [32]. In this situation, the product
Dη2η

0.34
1 is expected to remain constant at room tempera-

ture and can be estimated from tabulated values [26] to
determine D12 for a given oil pair.
Here, the solvent viscosity of oil pairs is kept constant at

η2 ¼ 0.49 mPa s (0.65 cS) and η1 is varied according to 4.6
(5 cS), 48 (50 cS), and 487 mPa s (500 cS). The measured
values of QC are plotted as a function of η1 in Fig. 2(b) and
data are well fitted with QC ∼ η−1=31 , which in turn suggests

QC ∼D12. Since the Péclet number Pe ¼ Q=ðhD12Þ quan-
tifies the relative influence of convection and diffusion, we
compare QC=h to the values of D12 estimated using the
hydrodynamic approach and find

QC

h
¼ PeCD12; ð3Þ

where the critical PeC ¼ 850 for fully miscible fluids
[Fig. 2(b), inset]. The same method of determining QC
is applied to the partially miscible oil and alcohol cases,
where η1 ¼ 97 mPa s (100-cS oil) is fixed and η2 ¼ 2.25
(isopropanol), 2.83 (1-butanol), 3.57 (2-butanol), and
3.62 mPa s (1-pentanol). Over the limited range of solvent
viscosity, data suggest QC ∼ η−1.72 , which is in significant
deviation from Stokes-Einstein prediction, as one would
expect QC ∼ η−12 [Fig. 2(c)]. Departure from theory is not
unexpected as silicone oils and low-molecular alcohols
have different chemical affinity and the configuration of a
polymer in solution, such as its hydrodynamic radius R1, is
known to strongly depend on the interaction with the
solvent [30,33]. In particular, alcohols can be considered as
“poor” solvents for silicone oils since, for instance, we
observe that a 100-cS silicone oil can be partially dissolved
in butanol and pentanol but not in ethanol nor hexanol.
Dynamic similarity, however, can be used to estimate the
effective D12 for partially miscible oil and alcohol fluid
pairs using Eq. (3), which yields the following
estimates: D ≈ 3.5 × 10−10 (isopropanol), 2.5 × 10−10
(1-butanol), 1.6 × 10−10, (2-butanol), and 1.5 × 10−10
ð1-pentanolÞ m2=s with an evaluated uncertainty in the
range of ΔD ≈ 10−11 m2=s based on the calculation of the
critical flow rate with ΔQC ≈ 0.2 μL=min. Hence, micro-
fluidic determination of QC provides useful information
about the initial flow interaction between chemically
different fluids, which is characterized using an effective
diffusion coefficient by analogy with fully miscible fluids.
Another aspect of the swelling of diffusive threads

resides in the development of a diffusion layer δ down-
stream from the location of εM. As can be seen in Fig. 1(b),
the spatial evolution of ε appears quasilinear beside its
bounded nature. To quantify thread swelling, we measure
the location LF where ε ≈ h and the datum LM where ε ≈
εM as a function of the reduced flow rate QT=QC as
indicated in Fig. 3(a). Both quantities depend on QT
according to LF=h ¼ 5.3ðQT=QCÞ and LM=h ¼
1.5ðQT=QCÞ1=2 [Fig. 3(b)]. Scaling relationships for
LM and LF are used to estimate the thread divergence
∇ · ε, where ε ¼ εi and i is the vector unit in the x direction,
in the straight channel due to diffusion according
to ∇ · ε ¼ dε=dx ¼ ðh − εMÞ=ðLF − LMÞ. Since dε=dx
depends on εM, which in turns depends on φ, we use
the method of iso-φ curves with a few selected cases in
Fig. 3(c). For QT < QC, dε=dx remains nearly constant
while the divergence becomes inversely proportional to QT
for QT > QC. This behavior is expected as the exponent

FIG. 2. (a) Evolution of εM=h along φ curves as a function of
Q1 for various fluid pairs as indicated with L1 and L2. (b) Critical
flow rate QC versus inner viscosity η1 for oil fluid pairs. Solid
line: QC ¼ 5.5η−1=31 . Inset: QC=h vs diffusion coefficient D.
Solid line: QC=h ¼ PeCD with PeC ¼ 850. (c) Critical flow rate
QC versus outer viscosity η2 oil and alcohol fluid pairs. Solid line:
QC ¼ 1.4 × 10−4η−1.72 ; dashed line: QC ¼ 9 × 10−3η−12 .

PHYSICAL REVIEW LETTERS 125, 174502 (2020)

174502-3



associated to the evolution of LF becomes dominant for
large QT , which leads to the approximation

∇⃗ · ε⃗� ¼ a

�
1 − ε0

h

��
QT

QC

�−1
; ð4Þ

where a ¼ 1=5.3. As can be seen in Fig. 3(c), inset, good
agreement is found between data and Eq. (4). The thread
divergence can also be expressed using Eq. (3) as
∇ · ε∗ ¼ bðεC0 =hÞPe−1, where the thread complementary
diameter εC0 ¼ h − ε0 and b ≈ 160. Thus, our analysis
suggests the diffusion layer scales as δ ∼ x=Pe. This result
compares with Taylor dispersions where δ ∼ ðx=PeÞ1=3 in
the upstream region and δ ∼ ðx=PeÞ1=2 in the downstream
region [34,35] taking into consideration the confined nature
of δ and the use of scaling laws with varying exponents.
Such “ultradiffusive” behavior of lubricated threads is
interpreted as resulting from their large interfacial area

and location at the centerline of parabolic stokes flows as
opposed to stratified flows where diffusion primarily occurs
near the solid walls.
Finally, the growth of the diffusion layer has implications

on the structural stability of small threads. Previous
analysis highlights the complex radial composition of
miscible fluid threads having a highly viscous core of
diameter ε0 unsheathed within a swelled layer of diameter
εM forming near the fluid contactor. In turn, the swelled
thread is enclosed within a diffusive layer δ that further
develops downstream. Thus, the highly viscous core
experiences an overall deceleration as a result of swelling
behavior of its envelope, which hints at the development of
a dynamic compressive force along the thread axis to
conserve momentum based on rudimentary control volume
analysis. Experimental evidence of diffusion-induced buck-
ling of viscous threads is displayed on Fig. 3(d) where
threads are seen to coil within their diffusive envelope for
small ε=h at large QT=QC. Complementary theoretical and
numerical work taking into account the development of
transient stresses in the diffusive region would help further
clarify internal buckling of diffusive fluid threads in parallel
microflows.
Overall, the viscous regime of lubricated threads pro-

vides a useful reference to characterize mass diffusion
phenomena between viscosity-differing fluids. Here, a
thread-based method is developed in conjunction with
bounded function analysis of iso-φ curves to identify a
single kinematic quantity QC associated with each fluid
pair. In turn, information aboutQC is employed to calculate
an effective diffusion coefficient D12 using similitude
arguments. This approach of determining QC does not
require any particular assumption about D12 and can be
applied to a variety of fully and partially miscible fluid pairs
having large viscosity contrasts. Techniques based on
microfluidic viscous threads are promising for probing
the role of fluid properties on diffusion as well as
for characterizing diffusion-limited reactions with high-
viscosity fluids. Future work could also examine the flow
behavior of partially miscible fluids systems in relation
with spontaneous emulsification phenomena to advance
both practical understanding and modeling of viscous fluid
interactions in confined microsystems.
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