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1 Introduction

Branching channels are widespread in nature and across 
a range of scales, from leaf venation and bronchioles in 
the lungs to distributary channels in river deltas. In gen-
eral, splitting flows into multiple channels is practical for 
the transport and distribution of fluids over large areas and 
typically occurs through a complex system of ramification 
channels that can evolve over time. Separating streams is 
also common in chemical plants, where branched pipelin-
ing is used for flow management and directing fluids into 
specific reactors (Couper et al. 2005). In the case of dis-
persed phase flows involving components such as solid 
particulates, gas bubbles, or liquid droplets, bifurcating 
microchannels are pivotal to separation processes and offer 
the possibility to filtrate, dilute, or concentrate constituents 
using a variety of techniques (Lenshof and Laurell 2010; 
Hardt and Hahn 2012; Brouzes et al. 2015). A fine tuning 
between flow rates, fluid properties, and branching geom-
etries can also be employed to manipulate the size of drop-
lets or bubbles in microfluidic platforms (Link et al. 2004; 
Ménétrier-Deremble and Tabeling 2006; Jullien et al. 2009; 
Leshansky et al. 2012). In this context, the subtle interac-
tion between size and concentration of fluid particles with 
flow rate in each branch has been extensively studied (Engl 
et al. 2005; Pozrikidis 2012; Parthiban and Khan 2013).

In contrast to the situation of dispersed flows, the 
dynamics of viscous separated flows has been relatively 
unexplored in bifurcating microchannels (Barnett and 
Cochrane 1956; Engl et al. 2006). The ability of high-vis-
cosity fluids to stratify and form threads surrounded with 
low-viscosity fluids in confined geometries due to self-
lubrication effects (Joseph et al. 1984) and curved inter-
faces (Guillot et al. 2006), however, opens opportunities for 
the development of methods to handle and mix a range of 

Abstract We experimentally study the transport proper-
ties of threads made of high-viscosity fluids flowing in a 
sheath of miscible, low-viscosity fluids in bifurcating 
microchannels. A viscous filament is generated using a 
square hydrodynamic focusing section by injecting a ‘thick’ 
fluid into the central channel and a ‘thin’ fluid from the side 
channels. This method allows us to produce miscible fluid 
threads of various sizes and lateral positions in a straight 
channel and enables the systematic study of the down-
stream thread’s response to flow partitioning in branching 
microfluidic networks at low Reynolds numbers. A phase 
diagram detailing the various flow patterns observed at the 
first bifurcation, including thread folding, transport, and 
fouling, is presented along with transition lines. We also 
examine the role of viscous buckling instabilities on thread 
behavior and the formation of complex viscous mixtures 
and stratifications at the small scale. This work shows the 
possibility to finely control thread trajectory and stability as 
well as manipulate the structural arrangement of high-vis-
cosity multiphase flows in complex microfluidic systems.

Keywords Multiphase flow · Miscible fluids · Flow 
pattern · Viscous folding · Stratification · Fluidic network · 
Hydrodynamics instability

 * Thomas Cubaud 
 thomas.cubaud@stonybrook.edu

1 Department of Mechanical Engineering, Stony Brook 
University, Stony Brook, NY 11794-2300, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10404-016-1720-7&domain=pdf


 Microfluid Nanofluid  (2016) 20:55 

1 3

 55  Page 2 of 10

thick and reactive substances at the small scale. The simple 
microfluidic design of branching channels is advantageous 
for manipulating local concentrations and interfacial area 
of multiphase flows. As the flow of viscosity-differing flu-
ids can spatially evolve and form complex structures over 
short distances (Cao et al. 2003; Xia et al. 2010; Cubaud 
and Notaro 2014), predicting the distribution and mixing of 
viscous materials in bifurcating microgeometries presents 
significant challenges due to the influence of local viscosi-
ties on stream velocities as well as viscous buckling insta-
bilities (Cubaud and Mason 2012).

Here, we investigate the transport properties of high-
viscosity multiphase flows in simple distributary systems 
composed a dichotomous array of branching microchan-
nels of equal size. A lubricated viscous thread is produced 
in a sheath of miscible, low-viscosity fluid using a focus-
ing geometry located upstream of a main channel. Since 
downstream branches have similar dimensions, the flow 
rate in distributaries decreases after each bifurcation. This 
localized deceleration can induce significant flow destabi-
lization, including thread viscous folding at the separation 
edge, shear-induced buckling deformation in straight chan-
nels, or thread lubrication failure (i.e., thread direct contact 
with solid walls) leading to the fouling of specific branches 
with high-viscosity fluid. In general, we examine the mech-
anisms at play during the distribution of viscous materials 
across a large microfluidic area through the study of thread 
dynamical response to flow partitioning and the formation 
of resulting complex stratifications downstream of a bifur-
cation. First, we inquire about the relationships between 
flow rates, thread size, and lateral positioning in a main 
straight channel for a range of viscosity contrasts. Second, 
we develop a phase diagram of flow regimes at the first 
bifurcation based on dimensionless flow parameters. Then, 
we conduct a close examination of the folding instability in 
confined geometries. Finally, we examine the peculiar evo-
lution of threads and stratifications along the microfluidic 
network.

2  Experimental methods

The microfluidic system consists of a series of inter-
connected square microchannels of identical height 
h = 250 µm. Fluids are introduced into a symmetric 
hydrodynamic focusing section, which is connected to a 
central channel that splits into two branches with a bifur-
cating angle of π/2 (Fig. 1). Downstream, a succession of 
bifurcations having a similar angle of π/2, is applied to 
each branch to produce a simple dichotomous tree-like 
network resulting in eight terminal branches as described 
in Sects. 6 and 7. To insure the same flow rate in each 
channel, all terminal branches have the same length and 

discharge into a single microfluidic pool connected to 
the outlet. The device is constructed using conventional 
silicon-based microfabrication techniques (Madou 2012), 
where microchannel sidewalls are etched through a silicon 
wafer and top and bottom walls are made of borosilicate 
glass sealed to the silicon slab using anodic bonding. Flex-
ible tubes are connected to the device to inject and recover 
fluids, and the microdevice is placed on top of an inverted 
microscope equipped with a high-speed camera to record 
and document flow behavior.

To produce a lubricated thread, a high-viscosity fluid 
(LA) is injected from the central channel at a volumetric 
flow rate QA and a low-viscosity fluid (LB) is introduced 
from the side channels at flow rates Q0 and Q1, which are 
independently controlled with separate syringe pumps. The 
total side flow rate is labeled QB = Q0 + Q1. Fluids are 
made of conventional polydimethylsiloxane (PDMS) oils 
of kinetic viscosity νA = 500 cS for LA and various viscosi-
ties νB ranging from 0.65 to 10 cS for fluid LB to examine 
the effects of dynamic viscosity contrasts χ = ηA/ηB of 52, 
106, 180, and 990. In this work, we focus on phenomena 
where diffusion and inertial effects are relatively negligible 
on thread behavior for Péclet numbers Pe = (QA + QB)/
(hD) ≥ 2.4 × 104, with D being the diffusion coefficient 
between selected silicone oils, and Reynolds numbers 
Re = (QA + QB)/(hνB) ≤ 21 (Cubaud and Notaro 2014). 
Given the relatively low value of Re, flows are considered 
fully developed after a short distance x < h from the fluid 
junction (Tritton 1988). The absolute flow rate ratio is 
defined as ϕ0 = QA/(Q0 + Q1). This parameter essentially 
controls the thread diameter ε. The thread lateral position 
yT is manipulated with the ratio of the side flow rates that 
we label ‘symmetry ratio’ according to ϕS = Q0/Q1. After 
the first bifurcation, the channel collecting most of the fluid 
injected at Q0 is labeled Branch 0 and the other channel is 
referred to as Branch 1. A binary notation system is later 
introduced to identify high-order branches. We first exam-
ine thread morphology in the central channel and the condi-
tions required to direct a thread in distributary channels.

Fig. 1   Schematic of branching microchannels. All channels are 
square in cross section with a height of h = 250 µm. First part of 
the network includes hydrodynamic focusing section, central channel, 
and initially bifurcation channels
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3  Lateral position and size of threads

Hydrodynamic control of viscous miscible fluid interfaces 
is readily achieved using laminar flow properties of micro-
scale flows. Experiments are carried out to interrogate the 
relationship between thread location yT and size ε with the 
symmetry ratio ϕS = Q0/Q1 and the absolute flow rate ratio 
ϕ0 = QA/QB (Fig. 2a). For each set of experiments, the total 
side flow rate QB = Q0 + Q1 is kept constant while Q0 
and Q1 are modified to modulate ϕS for a given QA. Meas-
urements are carried out a few channel diameters away 
from the junction at x/h ~ 5 when the thread has reached 
its final position in the central channel (Fig. 2b). For thin 
threads when QA« QB, the viscous filament is expected to 
be located at the virtual interface formed by the side injec-
tions in the main channel (Fig. 2a—inset). To illustrate this 
type of operating conditions at low Re ~ O(1), QB is set to 
200 µL/min and the influence of ϕS on thread behavior is 
examined for various QA = 1, 2, 5, 10, 20, and 50 µL/min. 

In purely laminar flow conditions, the position of the vir-
tual interface between the two side flows is computed by 
integrating the Fourier series describing the velocity profile 
in a square duct (White 1991) and expressed as a function 
of ϕ0 to obtain a ‘S-curve.’ Using a parallel-plate approxi-
mation with a flat interface between sheath streams having 
identical viscosity ηB, a simple analytical solution can be 
expressed according to

with the coefficient k = 1 (Cubaud and Mason 2008). In 
practice, the coefficient k controls the steepness of the curve, 
and when k = 2/3, the curve is found to closely follow that 
of the computed solution for the virtual interface between 
two side streams with <1 % variation from the ideal curve. 
This method allows us to employ a simple analytical expres-
sion to approximate the theoretical interface location cal-
culated through direct velocity profile integration. We find 
experimentally that most data points are located between 
the curves defined with k = 1 and 2/3 (Fig. 2a). While 
the influence of ϕ0 is relatively negligible when ϕS ranges 
between 10−1 and 101, each curve displays end tails depart-
ing from the basic curve as ϕ0 is increased due a swelling 
of thread near the sidewalls and the possibility of partial 
thread lubrication, i.e., threads not fully detached from the 
top and bottom walls similar to the tubing regime in square 

(1)yT/h =

(

1+ ϕ−k
S

)−1

−0.5,

Fig. 2  Lateral thread positioning controlled with side flow rates Q0 
and Q1 for χ = 180. Flow rates are expressed in µL/min. a Evolu-
tion of thread lateral position yT as a function of symmetry ratio 
ϕS = Q0/Q1 for a fixed sheath flow rate Q0 + Q1 = 200 and various 
thread flow rates QA. Solid and dash lines yT/h = (1 + ϕS

−k)−1 − 0.5. 
b Micrographs showing the production of small off-centered threads 
in the focusing section for QA = 1 and (Q0, Q1) = (i) (190, 10), (ii) 
(50, 150), (iii) (100, 100), (iv) (150, 50), and (v) (10, 190). c Evolu-
tion of thread position versus side flow rate fraction for QA = 1. Solid 
line yT = Q0/(Q0 + Q1) − 0.5

Fig. 3  Size of off-centered threads in the main channel. Flow rates 
are expressed in µL/min, χ = 180. a Evolution of normalized thread 
diameter ε/h as a function of lateral position yT/h for various central 
flow rates QA = 1, 2, 5, 10, 20, 50 (from bottom to top), see text for 
details. b Measurement of central thread diameter ε0 as a function of 
ϕ0, solid line ε0/h = (ϕ0/2)1/2. c Experimental micrographs for threads 
near sidewalls, QA = 20 and (Q0, Q1) = (i) (10, 190), (ii) (15, 185), 
and (iii) (50, 150); QA = 50 and (Q0, Q1) = (iv) (185, 15), (v) (180, 
20), and (vi) (160, 40)
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channels (Cubaud and Notaro 2014) or plane microfluidic 
chambers (Darvishi and Cubaud 2011). Incidentally, in this 
series of experiments, an intriguing property arises for fixed 
QB = Q0 + Q1, where the thread location is a linear func-
tion of one normalized side flow rate according to yT ≈ Q0/
(Q0 + Q1) − 0.5 (Fig. 2c). The previous expression can be 
directly deduced from the parallel-plate approximation for 
k = 1 and gives excellent result when ϕS is near unity. How-
ever, in the following we elect to use the coefficient k = 2/3 
as it yields better estimate for the thread location for small 
and large ϕS.

The correlation between the thread lateral position and 
size in the central channel is shown in Fig. 3a. The swelling 
of threads near the sidewalls can be described using mass 
conservation and assuming plug flow for the viscous thread, 
i.e., uniform velocity profile within the thread, in the low-
velocity regions of the sheath fluid near solid boundaries. 
The gray area in the graph corresponds to regions in the 
parameter space where the thread size would be larger than 
the distance from the sidewalls, which is simply defined 
with ε/2 = 0.5 − yT for yT > 0 and ε/2 = 0.5 + yT for 
yT < 0. Experiments conducted for various QA are in good 
accordance with this argument. For large thread sizes, near 
the no-zone limit, the shift in position toward the center of 
the channel is due to a partial lubrication failure, i.e., the 
central part of the thread does not fully detach from the 
top and bottom walls. The thread bistability is more pro-
nounced for large thread size, which corresponds to large 
QA (Fig. 3c). A useful approximation for the functional 
relationship between small thread size ε and yT can be 
deduced analytically assuming a cylindrical thread in plug 
flow according to

where U is the local velocity deduced from the nearly para-
bolic profile of the sheath fluid in the median plane of the 
square channel,

with the total multiphase flow superficial velocity 
JTot = (QA + Q0 + Q1)/h

2. Combining Eqs. 2 and 3 to 
express ε as a function of yT yields good agreement with 
experimental data, and a nearly constant thread size ε0 is 
measured near the channel central line at yT ≈ 0 (Fig. 3a). 
As expected, the central thread size follows the scaling 
law ε0/h = αSϕ0

1/2 with a prefactor αS = 2−1/2 (Cubaud and 
Notaro 2014) for large viscosity contrast χ ≫ 1 (Fig. 3b). 
Overall, the thread size and location are found relatively 
independent of the viscosity contrast χ, which allows us 
to finely control thread positioning and size in the central 
channel and examine in detail the dynamic thread response 
to the first bifurcation.

(2)πε2/4 = QA/U,

(3)U = 2.1JTot

(

1−4
[

yT/h
]2

)

,

4  Phase diagram in branching channels

The specific branching geometry investigated in this work 
where a single channel separates into two channels of equal 
size results in a flow deceleration, which can initiate viscous 
buckling instabilities depending on fluid properties and flow 
parameters. Here, we systematically examine thread behavior 
in the first bifurcation between main and secondary channels. 
The observed flow patterns consist of (1) thread folding on 
the splitting edge for symmetry ratios ϕS near unity, (2) thread 
transport in secondary channels for small and off-centered 
threads, and (3) fouling of secondary channel for large threads 
near sidewalls. A typical phase diagram with corresponding 
flow patterns is shown in Fig. 4 where the absolute flow rate 
ratio ϕ0 is expressed as a function of the symmetry ratio ϕS. 
The transition lines between transport and folding regimes 
are calculated for A/2 ~ |yT|, where A is the folding amplitude. 
Previous work has shown that A is essentially proportional 
to the thread size ε with a coefficient that depends on the 

Fig. 4  a Phase diagram of viscous threads behavior in branch-
ing microchannels based on absolute flow rate ratio ϕ0 and symme-
try ratio ϕs for constant QB = 200 µL/min and viscosity contrast 
χ = 180. Transition lines between folding and transport regimes 
are calculated using Eq. (4). b Experimental micrographs of thread 
regimes with corresponding flow rates in µL/min, (QA, Q0, Q1) = (i) 
(20, 5, 195), (ii) (20, 100, 100), (iii) (20, 195, 5), (iv) (2, 50, 150), (v) 
(2, 100, 100), and (vi) (2, 150, 50)
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viscosity contrast χ and the microchannel geometry (Cubaud 
et al. 2011). Here, experiments suggest that A ≈ 2.4ε and this 
finding is used in conjunction with Eqs. 2 and 3 to express the 
condition for a folded thread to intercept the splitting edge of 
the bifurcation (A/2 ~ |yT|) such as:

where the constant c ≈ 1.14 is calculated from geometric 
parameters and folding amplitude, and yT is expressed using 
Eq. 1 with k = 2/3. Solving for the direct relationship between 
ϕ0 and ϕS yields a rather cumbersome expression involving 
ratios of polynomial functions, which is more conveniently 
represented graphically in Fig. 4. This criterion for the fold-
ing/transport transition shows good agreement with experi-
mental data for small and large ϕS. Conversely, the use of 
k = 1 for relating yT and ϕ0 allows for more finely matching 
experimental data when the symmetry ratio is near unity with 
transition lines for positive and negative yT coming closer to 
one another. The fouling transition is reached when the thread 
is near the sidewalls and displays partial lubrication, which 
corresponds to a similar criterion as previously used, specifi-
cally ε/2 = 0.5 − yT for yT > 0 and ε/2 = 0.5 + yT for yT < 0 
and we find ϕ0 ~ 3ϕS for ϕS « 1 and ϕ0 ~ 3/ϕS for ϕS » 1. The 
rich dynamical behavior of the threads at a bifurcation can be 
utilized to produce lubricated threads or complex stratifica-
tions in branching channels. In particular, the presence of a 
spatially fixed splitting edge is useful for better understanding 
how the folding frequency f of a thread is related to viscosity 
contrasts and local flow velocities.

5  Folding instability

In this section, we examine the viscous buckling behavior 
of a thread directly impinging the solid edge of the bifurca-
tion. The folding frequency f is measured at the bifurcation 
for different fluid pairs (Fig. 5). A spatiotemporal diagram is 
created from high-speed movies generated for each flow rate 
and fluid pair to compute the average folding period T = f−1 
(Fig. 5b—inset). In general, we find that large threads dis-
play a regular folding mechanism where each fold is alter-
natively deposited into each branching channel. By contrast, 
small threads can adopt a more complex behavior with the 
alternate deposition of two folds in each branching chan-
nel. Overall, the folding frequency appears to be relatively 
independent of the deposition mode since it is controlled 
through upstream condition in the square channel. As the 
thread is convected at velocity U toward the channel edge, 
the folding frequency should scale as f ~ U/S where S is the 
arc length of a fold. Previous work (Cubaud et al. 2011) 
conducted on the shape of folded threads made of similar 

(4)c(yT/h)
2
[

1−4(yT/h)
2
]

∼

(

1+ ϕ−1
0

)−1

,

fluids in microchannels has shown that the arc-to-wave-
length ratio λ/S weakly increases with χ and the wavelength 
remains proportional to the folding amplitude, λ ∝ A, for 
moderate values of the viscosity contrast. Hence, the pro-
portionality between the folding amplitude and the thread 
diameter, A ∝ ε, suggests that the arc length S scales with ε. 
Therefore, for each fluid pair investigated in this study, we 
calculate the effective rate of buckling according to

 

(5)Γ = U/ε.

Fig. 5  Viscous thread folding in branching microchannels. a Micro-
graphs of central folding, from stagnation flow to multistate folding, 
χ = 52, ϕS = 1, ϕ0

−1 = (i) 1, (ii) 1.5, (iii) 2, (iv) 6, (v) 9, and (vi) 
14. b Folding frequency f versus buckling rate Γ for viscosity contrast 
χ = 52 (open diamond), 106 (open square), 180 (open circle), and 
990 (open triangle), solid lines f = aΓ k, with exponent k = Γ−0.01 
and coefficient a = 0.7χ−0.28 (inset right). Inset left spatiotemporal 
diagrams used to calculate the folding period T during simple and 
complex thread deposition into secondary channels. c Evolution of 
folding frequency f versus (i) thread location yT and (ii) symmetry 
ratio ϕs for χ = 190, QA = 10 and QB = 200 µL/min; solid lines cor-
respond to f = f0 (1 − 4[yT/h]2), where f0 is the average frequency at 
yT = 0
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The evolution of the folding frequency f is shown as 
a function of Γ in Fig. 5b for various χ. As the viscosity 
contrast is varied, data points fall into curves that appear 
parallel to one another and are fitted with a scaling law 
f = aΓk, where the exponent k = Γ−0.01 slightly decreases 
from unity as the flow velocity increases and the coefficient 
a = 0.7χ−0.28 is a weak function of the viscosity contrast. 
This finding essentially corroborates early work related to 
viscous folding in diverging microchannels (Cubaud and 
Mason 2006) where, similar to the viscous regime in large-
scale experiments of sheet folding and thread coiling (Ribe 
2003; Maleki et al. 2004; Ribe et al. 2012), f was found 
proportional to the flow velocity in the viscous regime. In 
this work, we obtain a more refined microfluidic meas-
urement of f, which allows us to clarify the thread folding 
behavior in relation to flow structure and fluid composition. 
The presence of a varying exponent k suggests a possible 
small non-Newtonian structural behavior of the polymeric 
oil used to form the thread in the experiment at large shear 
rate. This aspect, which is beyond the scope of the present 
work, would be worth examining using strongly non-New-
tonian fluids in future studies.

The additional degree of control offered through experi-
mentally dissociating side flow rates and using the symme-
try ratio ϕS also permits to measure f for threads positioned 
at different locations in the parabolic velocity profile of the 
central channel. In this case, we employ a methodology 
similar to the one used before, namely fixing ϕ0 with con-
stant QA and QB to obtain a constant total multiphase flow 
superficial velocity JTot and varying the symmetry ratio ϕS. 
Owing to small variations for f at different locations, results 
show that the folding frequency is indeed proportional to 
the local flow velocity of the sheath fluid near the thread in 
the parabolic flow profile (Fig. 5c).

6  Thread dynamics in networks

We now turn our attention to the evolution of miscible 
fluid threads in the transport regime in secondary chan-
nels and beyond along the multiple branching channel 
geometry. The flow evolution is monitored along mul-
tiple bifurcations of square microchannels of identical 
width h. Figure 6 shows the binary notation system used 
to label various regions of the network. We denote by N 
the bifurcation number and use a binary code for address-
ing various branch names, such as Branch 00 for a tertiary 
channel and Branch 000 for a quaternary channel along 
the network. Our specific geometrical constrain imposes a 
sheath flow rate of per branch according to QB/2N. There-
fore, after three nodes, one obtains a flow rate reduc-
tion per channel of QB/8, which can induce significant 
thread swelling due to the localized increase of ϕ0 and 

results in the development of complex thread morpholo-
gies and viscous stratifications. Although the bifurcation 
angle remains equal to π/2 throughout the network, the 
incidence angle made between a feeding channel and dis-
tributaries is π/2 for the first bifurcation (N = 1) and π/4 
for second and third bifurcations (N = 2 and 3). Assum-
ing purely laminar flow conditions and a negligible influ-
ence of the thread flow rate for QA « QB, the stagnation 
streamlines separating distributaries can be calculated 
for the sheath flow using Eq. (1). Given the increasingly 
large range of parameter space associated with the com-
plete exploration of the system, here we discuss the phe-
nomenology of a few typical flow processes for threads 
and stratifications observed during the course of this 
investigation.

We first examine the evolution of viscous miscible fluid 
threads in various branches of the system. In addition to the 
folding instability of viscous threads in decelerating flows, 
which typically occurs at bifurcations, a shear-induced 

Fig. 6  Schematic representation of dichotomous distributary micro-
fluidic array composed of a binary network made of square micro-
channels of identical width

Fig. 7  Example of thread morphology in the transport regime in 
a secondary channel (Branch 1). a Moderate viscosity contrast, 
χ = 180, ϕ0 = 2.5 × 10−2, ϕS = (i) 9, (ii) 5.7, (iii) 4, and (iv) 3. b 
Large viscosity contrast, χ = 990, ϕ0 = 10−2, ϕS = (i) 4, (ii) 3, (iii) 
2.3, and (iv) 1.9
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buckling instability—previously labeled as swirling insta-
bility (Cubaud and Mason 2012)—can also develop along 
a straight channel and can significantly deform threads 
located in the high shear region of the sheath fluid near 
the sidewalls. Given the relatively short length of the cen-
tral channel, which is used to position threads, significant 
thread deformations are only observed in secondary chan-
nels and beyond in the transport regime. The combina-
tion of folding and swirling instabilities produces intricate 
thread undulations (Fig. 7). An important consequence of 
the branching geometry is the shift in the streamlines posi-
tion from a channel to another, which modifies thread lat-
eral position in different branches. Indeed, in the asymp-
totic limit of equal distribution of sheath fluid in each 
branch for QA « QB, streamlines are expected to shift 
toward the center of the channel to maintain local mass 
conservation. This hydrodynamic property tends to dis-
place threads near the channel centerline and reduces the 
influence of the swirling effect due to sidewalls, which is 
advantageous for thread transport stability. As can be seen 
in Fig. 7, sinuous perturbations develop along various 
threads with asymmetrical distortions near sidewalls. This 
ability of a thread to sustain viscous buckling instabilities 
as well as bending resistance in confined microfluidic sys-
tems increases with thread size ε and viscosity contrast χ.

A range of thread behaviors is observed depending on 
fluid and flow properties. The system allows for directing 
threads into the network and permits the capture of emerg-
ing phenomena depending on thread history across the flu-
idic network. For instance, for low-viscosity contrasts, a 
thin thread near a wall can rupture into swirls as a result 
of shear produced by the sheath fluid. As such structures 
evolve, they adopt different shapes that become more com-
pact after bifurcation since the reduction in the flow rate 
in each channel produces a compressive stress on slender 
structures (Fig. 8a-i). Other examples consist of a thread 
undergoing a complex path in the network (Fig. 8a-ii) and 
the folding of a shear-deformed thread at a second bifurca-
tion (Fig. 8a-iii). For moderate viscosity contrasts, strong 
buckling deformation limits the manipulation of large 
threads and produces complex morphologies. For instance, 
Fig. 8b-i, b-ii shows the interaction between thread size and 
location in microgeometries, and Fig. 8b-iii shows a folded 
thread impinging another bifurcation. In general, we find 
that the prediction of thread location in the network is more 
accurate for branches in the inner network—near the pro-
jection of the central channel—due to ease in manipulat-
ing thread location and size near the central axis. Overall, 
the morphologies observed are somewhat reminiscent of 
geological features, such as folded veins in rocks (Johnson 
and Fletcher 1994) and enclaves in lava flows (Manga and 
Ventura 2005) .

7  Formation and evolution of heterogeneous 
viscous stratifications

Another important aspect of thread separation in branch-
ing channels is the formation of stratifications. The folding 
instability provides a natural mean to enhance the specific 
area between low- and high-viscosity fluids and produces 
spatially evolving stratifications made of folded threads. 
Here, we examine the flow produced in secondary channels 
as a result of thread folding instability. Given the complex-
ity associated with this type of flows, we restrict our analy-
sis to threads that are initially centered in the main channel, 
i.e., for a symmetry ratio ϕS = 1. The viscous fluid depo-
sition mechanism and the resulting stratifications strongly 
depend on the viscosity ratio χ and absolute flow rate ratio 
ϕ0. Figure 9 shows strata obtained for small and large vis-
cosity contrasts. For low χ, the thread folding amplitude 
is relatively small and regular flow patterns are produced, 
while increasing complex flows are obtained when χ is 
large. For large ϕ0, stratifications do not significantly dif-
fer from a homogeneous stratification with simple fluid 
arrangement. Indeed, geometrical confinement of partial 
lubricated threads restricts strong thread folding; however, 
as the thread size decreases, folding lines are included 
in the strata. The average velocity profile in the strata 

Fig. 8  Examples of thread evolution in network with formation of 
complex substructures. a Small viscosity contrast χ = 52, (QA, Q0, 
Q1) = (i) (5, 120, 80), (ii) (5, 140, 60), and (iii) (50, 260, 700). b 
Moderate viscosity contrast χ = 180, (QA, Q0, Q1) = (i) (1, 30, 170), 
(ii) (2, 30, 170), and (iii) (2, 20, 180)
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appears to be quasi-linear as fold lines are stretched into 
straight line anchored to the bifurcation edge. A large shear 
is exerted at the strata interface by the fast, low-viscosity 
stream. The increase in the spacing between striations pro-
duced by fold lines along the flow direction indicates flow 
acceleration.

To better understand the role of the folding instability on 
the morphology and dynamic of stratifications resulting 
from thread contact with solid walls, we measure the time-
averaged width <wf> of fluid deposition onto the inside 
walls of secondary channels for large viscosity contrast 
χ = 990. To this end, we produce spatiotemporal diagrams 
using the reslice function in ImageJ1 applied to a segment 
that is normal to the local channel axis, which creates a 
composite image where the instantaneous width wf appears 
in the y-axis and each time frame is shown in the x-axis 
(Fig. 10a). Each diagram is treated using a series of filters 
to create a binary image from which <wf> can be com-
puted. Images are taken from high-speed movies and typi-
cally cover at least a decade of folding periods T = 1/f to 
compute representative averages. For comparison, we also 
plot the width ws of a simple stratification produced using 
the same fluid pair. In this case, the initial injection scheme 
is modified to inject the high-viscosity fluid LA from a side 
channel at QA and the low-viscosity fluid LB from the other 
side channel and the central channel as shown in the upper 
inset of Fig. 10b. Assuming equal distribution in each 
branch, the absolute flow rate ratio ϕ0 is expected to remain 
the same before and after the bifurcation for ϕS = 1, which 
allows for a direct comparison between simple and com-
plex stratifications. Data for the single strata configuration 
are fitted using a variant of Eq. 1 with an exponent k = 0.58 

1 ImageJ. http://rsb.info.nih.gov/ij/.

along with a coefficient depending on the viscosity contrast 
χ,, and average width measurements of complex stratifica-
tions are correlated with ϕ0 using a scaling law (Fig. 10b). 
Overall, we find that <wf> is typically less than ws for ϕ0 
ranging between 10−2 and 10−1. Using a simple mass con-
servation argument based the average stratification velocity 
V = QA/

(

h < wf >
)

, this behavior suggests an enhanced 
transport of viscous material when deposited on the walls 
through folding compared to a bulk channel fluid injection. 
As a large difference in average velocities is observed 
between stratified and lubricated flows, complex stratifica-
tions formed through the deposition of a lubricated thread 
adopt an intermediate behavior.

The formation of intricate, pseudo-chaotic stratifications 
in laminar flow conditions offers the possibility to exam-
ine the evolution of viscous composite flows in dichoto-
mous networks for large viscosity contrasts χ. In particular, 
evolving stratifications made of folded viscous filaments 
can foul high-order channels depending on the absolute 
flow rate ratio ϕ0. As ϕ0 increases, channels in the inner net-
work become progressively ‘jammed’ with the high-viscos-
ity fluid (Fig. 11a). This mechanism directly results from 
the large difference in frictional pressure drop due to the 
viscosity coefficient η of each fluid and drastically raises 
the fluidic resistance of channels filled with the high-vis-
cosity fluid. Once a channel is fouled, minute quantities of 
the low-viscosity fluid, which are initially trapped by fold 

Fig. 9  Formation of complex stratifications in a secondary chan-
nel (Branch 1) for ϕs = 1. a Foliated strata for low-viscosity contrast 
χ = 52, ϕ0

−1 = (i) 1.5, (ii) 1.7, (iii) 2.5, (iv) 4.5, and (v) 11. b Hetero-
geneous strata for large viscosity contrast χ = 990, ϕ0

−1 = (i) 2.7, (ii) 
4, (iii) 4.5, (iv) 13, and (v) 20

Fig. 10  Width of stratifications for large viscosity contrasts χ = 990. 
a Estimation of time-average width <wF> for ϕ0

−1 = 20 at fixed loca-
tion in Branch 1 using spatiotemporal analysis, (i) raw diagram, (ii) 
processed diagram. b Variation in width as a function of ϕ0 for sim-
ple strata, wS (open circle), and for strata formed by thread folding, 
<wF> (open square). Solid line wS/h = [1 + [130 ϕ0]

−0.58]−1, dash 
line <wF>/h = 1.2ϕ0

1/4

http://rsb.info.nih.gov/ij/
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lines, can enter a slow-moving jammed branch and produce 
typical chevron-like structures (Fig. 11b). This behavior is 
observed after the second bifurcation and is accentuated in 
high-order distributaries, suggesting the possibility to blend 
small proportions of low-viscosity fluids with high-viscos-
ity fluids.

8  Conclusions

In this article, we characterize the behavior of threads made 
of high-viscosity fluids flowing in a sheath of miscible, 
low-viscosity fluids in a splitting microfluidic network. We 
first discuss the influence of fluid injection scheme and flow 
rates on the position yt and size ε of threads in the main 
square microchannel and develop analytical expressions for 
finely controlling viscous filament trajectories and dimen-
sions. A phase diagram detailing the various flow patterns 
observed at the first node is presented based on the absolute 
flow rate ratio ϕ0 and symmetry ratio ϕS with the identifica-
tion of three main regimes, including thread folding, foul-
ing, and transport. We then study the folding instability of 
a centered thread impinging the edge of the first bifurcation 
along with the influence of the local velocity field on the 
folding frequency f. The evolution of high-viscosity core-
annular flows is also examined in distributaries with focus 
on thread deformation along various sections of the system. 
We finally investigate the structural arrangement of fluids 
in the inner network for the case of stratifications made 

from a folded thread, and we describe the mechanism of 
viscous jamming along with the formation of chevron-like 
structures, which indicate a degree of mixing between dif-
ferent low- and high-viscosity components.

The microfluidic regimes analyzed in this work display 
very rich dynamics. Although complete characterization 
of high-viscosity multiphase flows in branching networks 
is beyond the scope of the present investigation, we shed 
light on a few basic properties of lubricated and stratified 
flows that could serve as a basis for the development of in-
line mixing methods with thick materials in small fluidic 
passages. We show, in particular, that geometrical confine-
ment of viscous buckling instabilities can be utilized to 
increase the interfacial area between viscosity-differing 
fluids and produce heterogeneous flows at the small scale. 
Better understanding transitions between lubricated and 
stratified flows and the associated disparity in residence 
times between species in each stream is pivotal for improv-
ing the flow management of highly viscous materials in 
microgeometries. To further characterize such phenomena 
in separating channels, future investigations could focus on 
the influence of the slipping angle on thread bending and 
folding and the role of various aspect ratios between dis-
tributaries to manipulate streamlines and local convective 
accelerations. Potential extensions of this work also include 
the use of non-Newtonian fluids as well as immiscible fluid 
pairs along with the study of threads behavior during iner-
tial or diffusive instabilities, which, respectively, occur for 
large and low injection rates of miscible fluids. Overall, 
this study opens up a range of new microfluidic designs for 
the manipulation of viscous threads, and the observation of 
phenomena reminiscent of large-scale viscous flows found 
in the environment offers the intriguing perspective of the 
realization of geological labs on chips using appropriate 
similitude approaches.
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