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FIG. 1. Influence of packing on bubble deformation, liquid: silicone oil of viscosity ν = 103 cS. (a) Time-series of a compact
arrangement of large air bubbles, the symbol * labels a reference bubble as it travels downstream ("t = 5.5 ms). (b) Compact
and dilute arrangements of small CO2 bubbles, from top to bottom: decreasing gas volume fraction.
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Multiphase flows in confined geometries exhibit a variety of intriguing morphologies. At the
small scale, the unique balance of forces produces flow patterns that are typically governed by
viscous and capillary effects. While surface tension tends to minimize liquid-gas interfacial areas
with bubbles having spherical shape, viscous creeping flows can also strongly deform bubbles
in velocity fields set with the channel geometry. Here, the deformation of capillary surfaces is
accentuated with the use of a highly viscous carrier fluid (silicone oil having a viscosity ν = 103 or
104 cS) and the presence of circular cavities along a square microchannel (h = 250 µm) for smoothly
modulating flow velocity. Although the size and concentration of air bubbles are usually determined
through pressure and microfluidic flow rates of injection, the use of carbon dioxide bubbles allows us
to manipulate mass transfer processes1–3 (i.e., dissolution and stripping mechanisms) and generate
a variety of multiphase flow patterns (Figs. 1 and 2). For instance, as CO2 bubbles considerably
shrink before reaching the field of view, dense arrangements of small bubbles can be produced. In the
viscous-dominated regime with a capillary number Ca ∼ O(1), gas bubbles adopt a range of shapes
depending on their size and packing. In particular, when passing through a series of extensions and
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FIG. 2. (a) and (b) Time-series of elongated air bubbles flowing with an oil of viscosity ν = 103 cS in a mildly deformed
microchannel, the symbol * labels a reference bubble as it travels downstream. Depending on channel geometry and initial
liquid-gas flows conditions, various dynamics are observed: (a) bubbles are out of phase ("t = 2.3 ms), and (b) bubbles are in
phase ("t = 3.1 ms). (c) and (d) High-viscosity multiphase flow patterns in a corrugated microchannel, from top to bottom:
increasing gas volume fraction, (c) air bubbles with a 103 cS-oil, (d) carbon dioxide bubbles with a 104 cS-oil. All scale bars:
250 µm.

constrictions, bubbles are observed to strongly elongate in accelerating flow regions and widen in
decelerating flow fields. These experiments illustrate the possibility to control the flow morphology
of microbubbles through the interplay between channel geometry, viscous flow, and mass transfer
processes.
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